求兩條線段的交點


  兩條線段的兩個端點坐標(x1,y1) (x2,y2) (x3,y3) (x4,y4)

  b1=(y2-y1)*x1+(x1-x2)*y1

  b2=(y4-y3)*x3+(x3-x4)*y3

  D=(x2-x1)(y4-y3)-(x4-x3)(y2-y1)

  D1=b2*(x2-x1)-b1*(x4-x3)

  D2=b2*(y2-y1)-b1*(y4-y3)

  交點(x0,y0)

  x0=D1/D   y0=D2/D

推導:http://www.cnblogs.com/dwdxdy/p/3230485.html

 

E. Covered Points
time limit per test
2 seconds
memory limit per test
256 megabytes
input
standard input
output
standard output

You are given nn segments on a Cartesian plane. Each segment's endpoints have integer coordinates. Segments can intersect with each other. No two segments lie on the same line.

Count the number of distinct points with integer coordinates, which are covered by at least one segment.

Input

The first line contains a single integer nn (1n10001≤n≤1000) — the number of segments.

Each of the next nn lines contains four integers Axi,Ayi,Bxi,ByiAxi,Ayi,Bxi,Byi (106Axi,Ayi,Bxi,Byi106−106≤Axi,Ayi,Bxi,Byi≤106) — the coordinates of the endpoints AA, BB (ABA≠B) of the ii-th segment.

It is guaranteed that no two segments lie on the same line.

Output

Print a single integer — the number of distinct points with integer coordinates, which are covered by at least one segment.

Examples
input
9
0 0 4 4
-1 5 4 0
4 0 4 4
5 2 11 2
6 1 6 7
5 6 11 6
10 1 10 7
7 0 9 8
10 -1 11 -1
output
42
input
4
-1 2 1 2
-1 0 1 0
-1 0 0 3
0 3 1 0
output
7

The image for the first example:

Several key points are marked blue, the answer contains some non-marked points as well.

The image for the second example:

求線段進過的整數點。線段經過的點,為x軸長度,與y軸長度的gcd。
#include<bits/stdc++.h>
#define ll long long
using namespace std;

struct Point{
    ll x,y;
    Point(ll x=0,ll y=0):x(x),y(y){};
};

ll gcd(ll a,ll b)
{
    return a==0?b:gcd(b%a,a);
}

bool cheak(ll op1,ll a,ll b){
    if(a>b)
        swap(a,b);
    return op1>=a&&op1<=b;
}

Point point_of_intersection(Point f1,Point f2,Point f3,Point f4,bool &mark)
{
    ll a1,a2,b1,b2,c1,c2,c3,c4,D,D1,D2;
    a1=f2.y-f1.y;
    a2=f1.x-f2.x;
    b1=a1*f1.x+a2*f1.y;
    ///b1=(y2-y1)*x1+(x1-x2)*y1
    c1=f4.y-f3.y;
    c2=f3.x-f4.x;
    b2=c1*f3.x+c2*f3.y;
    ///b2=(y4-y3)*x3+(x3-x4)*y3
    c3=f2.x-f1.x;
    c4=f4.x-f3.x;

    D=c3*c1-c4*a1;
    Point res;
    if(D==0){
        mark=false;
        return res;
    }
    D1=b2*c3-b1*c4;
    if(D1%D){
        mark=false;
        return res;
    }
    res.x=int(D1/D);

    D2=b2*a1-b1*c1;
    if(D2%D){
        mark=false;
        return res;
    }
    res.y=int(D2/D);

    if(!cheak(res.x,f1.x,f2.x)||!cheak(res.x,f3.x,f4.x)){
        mark=false; return res;
    }
    if(!cheak(res.y,f1.y,f2.y)||!cheak(res.y,f3.y,f4.y)){
        mark=false; return res;
    }
    return res;
}

Point edge[1006][2];
int main()
{
    int n;
    while( ~scanf("%d",&n)){
        for(int i=1;i<=n;i++){
            scanf("%lld%lld%lld%lld",&edge[i][0].x,&edge[i][0].y,&edge[i][1].x,&edge[i][1].y);
        }

        set<pair<ll,ll> > re;
        long long ans=0,tmp;
        bool mark;
        for(int i=1;i<=n;i++){
            tmp=gcd(abs(edge[i][0].x-edge[i][1].x),abs(edge[i][0].y-edge[i][1].y))+1;
            re.clear();
            for(int j=1;j<i;j++){
                mark=true;
                Point res=point_of_intersection(edge[i][0],edge[i][1],edge[j][0],edge[j][1],mark);
                if(mark)
                    re.insert(make_pair(res.x,res.y));
            }
            ans+=tmp-re.size();
        }
        printf("%lld\n",ans);
    }
    return 0;
}

  


免責聲明!

本站轉載的文章為個人學習借鑒使用,本站對版權不負任何法律責任。如果侵犯了您的隱私權益,請聯系本站郵箱yoyou2525@163.com刪除。



 
粵ICP備18138465號   © 2018-2025 CODEPRJ.COM