前面二進制加法運算,我們並沒有提操作數是有符號數,還是無符號數。其實前面的二進制加法對於有符號數和無符號數都成立。比如前面的8位二進制加法運算,第一張圖我們選radix是unsigned,表示無符號加法,第二張圖我們選radix是decimal,表示有符號數,從圖中可知結果都是正確的。對於有符號數來說,負數默認是補碼的形式存在。假設二進制數是n位,則對於無符號數來說,表示范圍是0~(2^n) -1 ,對於有符號數,表示的范圍是-(2^(n-1))~2^(n-1) - 1
對於有符號數來說,通常還要知道加法結果數據是否溢出。有一種直觀的方法判斷結果是否溢出,就是如果兩個加數有相同的符號,但是它們的和與它們有不同的符號,則產生溢出。假設有n位有符號二進制數x,y,它們的和為s,則它們和溢出判斷公式是 overflow = xn_1&yn-1&~sn-1 + ~xn_1&~yn-1&sn-1
修改后的有符號數加法代碼為:
module addern_signed(x, y, s, cout, overflow);
parameter n=8;
input [n-1:0] x;
input [n-1:0] y;
output reg[n-1:0] s;
output reg cout;
output reg overflow;
reg [n:0] c;
integer k;
always @(x,y) begin
c[0] = 1'b0;
for(k = 0; k < n; k = k + 1) begin
s[k] = x[k]^y[k]^c[k];
c[k+1] = (x[k]&y[k])|(x[k]&c[k])|(y[k]&c[k]);
end
cout = c[n];
overflow = (x[n-1]&y[n-1]&~s[n-1])|(~x[n-1]&~y[n-1]&s[n-1]);
end
endmodule
module addern_signed(x, y, s, cout, overflow); parameter n=8; input [n-1:0] x; input [n-1:0] y; output [n-1:0] s; output cout; output overflow; integer k; assign {cout, s} = x + y ; assign overflow = (x[n-1]&y[n-1]&~s[n-1])|(~x[n-1]&~y[n-1]&s[n-1]); endmodule
修改后的testbench文件為:
`timescale 1ns/1ns `define clock_period 20 module addern_signed_tb; reg [7:0] x,y; wire cout; wire [7:0] s; reg clk; addern_signed #(.n(8)) addern_signed_0( .x(x), .y(y), .s(s), .cout(cout) ); initial clk = 0; always #(`clock_period/2) clk = ~clk; initial begin x = 0; repeat(20) #(`clock_period) x = $random; end initial begin y = 0; repeat(20) #(`clock_period) y = $random; end initial begin #(`clock_period*20) $stop; end endmodule
功能驗證的波形圖如下:
對於有符號數的減法,我們也可以用加法來做,但是對於減數,我們要做以下變化,如果減數為正數,則變其為補碼表示的負數,如果其為補碼表示的負數,則把它轉化為正數。
assign y1 = y[n-1]?(~{y[n-1:0]}+1'b1):(~{1'b0,y[n-2:0]}+1'b1);
module subn_signed(x, y, s, cout, overflow); parameter n=8; input [n-1:0] x; input [n-1:0] y; output reg[n-1:0] s; output reg cout; output reg overflow; wire [n-1:0] y1; reg [n:0] c; integer k; //y commplement, if y=0, to negative with commplement,if y=1, to positive number. assign y1 = y[n-1]?(~{y[n-1:0]}+1'b1):(~{1'b0,y[n-2:0]}+1'b1); always @(x,y1) begin c[0] = 1'b0; for(k = 0; k < n; k = k + 1) begin s[k] = x[k]^y1[k]^c[k]; c[k+1] = (x[k]&y1[k])|(x[k]&c[k])|(y1[k]&c[k]); end cout = c[n]; overflow = (x[n-1]&y1[n-1]&~s[n-1])|(~x[n-1]&~y1[n-1]&s[n-1]); end endmodule
module subn_signed(x, y, s, cout, overflow);
parameter n=8;
input [n-1:0] x;
input [n-1:0] y;
output [n-1:0] s;
output cout;
output overflow;
wire [n-1:0] y1;
integer k;
//y commplement, if y=0, to negative with commplement,if y=1, to positive number.
assign y1 = y[n-1]?(~{y[n-1:0]}+1'b1):(~{1'b0,y[n-2:0]}+1'b1);
assign {cout, s} = x + y1 ;
assign overflow = (x[n-1]&y1[n-1]&~s[n-1])|(~x[n-1]&~y1[n-1]&s[n-1]);
endmodule
testbench代碼為:
`timescale 1ns/1ns `define clock_period 20 module subn_signed_tb; reg [7:0] x,y; wire cout; wire overflow; wire [7:0] s; reg clk; subn_signed #(.n(8)) subn_signed_0( .x(x), .y(y), .s(s), .cout(cout), .overflow(overflow) ); initial clk = 0; always #(`clock_period/2) clk = ~clk; initial begin x = 0; repeat(20) #(`clock_period) x = $random; end initial begin y = 0; repeat(20) #(`clock_period) y = $random; end initial begin #(`clock_period*20) $stop; end endmodule
從功能驗證的波形圖中,我們可以看到見過是正確的。