sklearn 繪制roc曲線


from sklearn.metrics import roc_curve, auc
import matplotlib as mpl  
import matplotlib.pyplot as plt
def plot_roc(labels, predict_prob):
    false_positive_rate,true_positive_rate,thresholds=roc_curve(labels, predict_prob)
    roc_auc=auc(false_positive_rate, true_positive_rate)
    plt.title('ROC')
    plt.plot(false_positive_rate, true_positive_rate,'b',label='AUC = %0.4f'% roc_auc)
    plt.legend(loc='lower right')
    plt.plot([0,1],[0,1],'r--')
    plt.ylabel('TPR')
    plt.xlabel('FPR')
    plt.show()

 


免責聲明!

本站轉載的文章為個人學習借鑒使用,本站對版權不負任何法律責任。如果侵犯了您的隱私權益,請聯系本站郵箱yoyou2525@163.com刪除。



 
粵ICP備18138465號   © 2018-2025 CODEPRJ.COM