動態規划 跳台階問題的三種解法


You are climbing a stair case. It takes n steps to reach to the top.

Each time you can either climb 1 or 2 steps. In how many distinct ways can you climb to the top?

Note: Given n will be a positive integer.

Example 1:

Input: 2
Output: 2
Explanation: There are two ways to climb to the top.
1. 1 step + 1 step
2. 2 steps

Example 2:

Input: 3
Output: 3
Explanation: There are three ways to climb to the tNop.
1. 1 step + 1 step + 1 step
2. 1 step + 2 steps
3. 2 steps + 1 step


這個題很顯然是用動態規划的做法,人在跳最后一步時,有兩種可能,人可能跳一個台階,也可能跳兩個台階,如果說n個台階的走法是F(n),那么F(n) = F(n-1) + F(n-2),當n=1時,F(n) = 1,當n = 2時,F(n) = 2;
public int climbStairs1(int n) {
		if (n <= 0)
			return -1;
		else if (n == 1)
			return 1;
		else if (n == 2)
			return 2;
		else
			return climbStairs1(n - 1) + climbStairs1(n - 2);
	}

 

這種解法時間復雜度很糟糕,在編譯器中,每次遞歸計算的值都沒有被保存下來,不建議采用。為了每次遞歸計算的值保存下來,我們創建一個空間大小為n+1的數組dp[],空間和時間復雜度都是O(n)。

public int climbStairs2(int n) {
        if (n <= 0)
            return -1;
        else if (n == 1)
            return 1;
        int[] dp = new int[n + 1];
        dp[1] = 1;
        dp[2] = 2;
        for (int i = 3; i <= n; i++)
            dp[i] = dp[i - 1] + dp[i - 2];
        return dp[n];
    }

 

在計算的過程中我們發現,dp[]數組滿足斐波那契數列關系,可以利用這一特點只定義三個變量,由此來降低空間復雜度,使得空間復雜度優化到O(n).

public int climbStairs3(int n) {
        if (n == 1)
            return 1;
        int first = 1;
        int second = 2;
        for (int i = 3; i <= n; i++) {
            int third = first + second;
            first = second;
            second = third;
        }
        return second;
    }

 

  


免責聲明!

本站轉載的文章為個人學習借鑒使用,本站對版權不負任何法律責任。如果侵犯了您的隱私權益,請聯系本站郵箱yoyou2525@163.com刪除。



 
粵ICP備18138465號   © 2018-2025 CODEPRJ.COM