長為N的數組,元素范圍是0-N-1,其中只有一個數是重復的,找出這個重復元素


思路:如果限制空間復雜度為O(1),我們就無法采用哈希表的方法去求解。題目中數組中所以數字都在范圍[0, N-1],因此哈希表的大小為N即可。因此我們實際要做的就是對N個范圍為0到N-1的數進行哈希,而哈希表的大小剛好為N。對排序算法比較熟悉的同學不難發現這與一種經典的排序算法——基數排序非常類似。而基數排序的時間空間復雜度剛好符合題目要求!因此嘗試使用基數排序來解這道面試題。

代碼如下:

#include<iostream>
#include<vector>
using namespace std;

int searchDulnum(vector<int>a){
    for (int i = 0; i < a.size(); i++){
        while (a[i] != i){
            if (a[i] == a[a[i]])return a[i];
            else{
                swap(a[i], a[a[i]]);
            }
        }
    }
    return -1;
            
}

int main(){
    vector<int>a = { 0, 1, 2, 3, 4, 5, 6, 6, 8, 9 };
    int res = searchDulnum(a);
    cout << res << endl;
    system("pause");
    return 0;
}

 


還有一類似方法題:求第一個確實正數,限定空間復雜度為O(1)

思路是把1放在數組第一個位置nums[0],2放在第二個位置nums[1],即需要把nums[i]放在nums[nums[i] - 1]上,將數組的第i位存正數i+1。那么我們遍歷整個數組,如果nums[i] != i + 1, 而nums[i]為整數且不大於n,另外nums[i]不等於nums[nums[i] - 1]的話,我們將兩者位置調換,如果不滿足上述條件直接跳過,最后我們再遍歷一遍數組,如果對應位置上的數不正確則返回正確的數。

int firstMissingPositive(vector<int>& nums) {
        int n=nums.size();
        int i=0;
        for(int i=0;i<n;i++){
            while(nums[i]>0&&nums[i]<=n&&nums[nums[i]-1]!=nums[i]){
                swap(nums[nums[i]-1],nums[i]);
            }
        }
        for(int i=0;i<n;i++){
            if(nums[i]!=i+1)return i+1;
        }
        return n+1;
        
    }

 


免責聲明!

本站轉載的文章為個人學習借鑒使用,本站對版權不負任何法律責任。如果侵犯了您的隱私權益,請聯系本站郵箱yoyou2525@163.com刪除。



 
粵ICP備18138465號   © 2018-2025 CODEPRJ.COM