sklearn中各種分類方法


### Multinomial Naive Bayes Classifier   
from sklearn.naive_bayes import MultinomialNB

clf = MultinomialNB(alpha=0.01)
clf.fit(train_x, train_y)


### KNN Classifier   
from sklearn.neighbors import KNeighborsClassifier

clf = KNeighborsClassifier()
clf.fit(train_x, train_y)


### Logistic Regression Classifier   
from sklearn.linear_model import LogisticRegression

clf = LogisticRegression(penalty='l2')
clf.fit(train_x, train_y)


### Random Forest Classifier   
from sklearn.ensemble import RandomForestClassifier

clf = RandomForestClassifier(n_estimators=8)
clf.fit(train_x, train_y)


### Decision Tree Classifier   
from sklearn import tree

clf = tree.DecisionTreeClassifier()
clf.fit(train_x, train_y)


### GBDT(Gradient Boosting Decision Tree) Classifier   
from sklearn.ensemble import GradientBoostingClassifier

clf = GradientBoostingClassifier(n_estimators=200)
clf.fit(train_x, train_y)


### SVM Classifier   
from sklearn.svm import SVC

clf = SVC(kernel='rbf', probability=True)
clf.fit(train_x, train_y)


免責聲明!

本站轉載的文章為個人學習借鑒使用,本站對版權不負任何法律責任。如果侵犯了您的隱私權益,請聯系本站郵箱yoyou2525@163.com刪除。



 
粵ICP備18138465號   © 2018-2025 CODEPRJ.COM