sklearn中各种分类方法


### Multinomial Naive Bayes Classifier   
from sklearn.naive_bayes import MultinomialNB

clf = MultinomialNB(alpha=0.01)
clf.fit(train_x, train_y)


### KNN Classifier   
from sklearn.neighbors import KNeighborsClassifier

clf = KNeighborsClassifier()
clf.fit(train_x, train_y)


### Logistic Regression Classifier   
from sklearn.linear_model import LogisticRegression

clf = LogisticRegression(penalty='l2')
clf.fit(train_x, train_y)


### Random Forest Classifier   
from sklearn.ensemble import RandomForestClassifier

clf = RandomForestClassifier(n_estimators=8)
clf.fit(train_x, train_y)


### Decision Tree Classifier   
from sklearn import tree

clf = tree.DecisionTreeClassifier()
clf.fit(train_x, train_y)


### GBDT(Gradient Boosting Decision Tree) Classifier   
from sklearn.ensemble import GradientBoostingClassifier

clf = GradientBoostingClassifier(n_estimators=200)
clf.fit(train_x, train_y)


### SVM Classifier   
from sklearn.svm import SVC

clf = SVC(kernel='rbf', probability=True)
clf.fit(train_x, train_y)


免责声明!

本站转载的文章为个人学习借鉴使用,本站对版权不负任何法律责任。如果侵犯了您的隐私权益,请联系本站邮箱yoyou2525@163.com删除。



 
粤ICP备18138465号  © 2018-2025 CODEPRJ.COM