單細胞RNA-seq比對定量用什么工具好?使用哪個版本的基因組?數據來說話


這么多工具和基因組版本,選擇困難症犯了,到底用哪個好呢?

2018 nature - Developmental diversification of cortical inhibitory interneurons : ENSEMBL release 84 Mus musculus genome

2017 Molecular Cell - Single-Cell Alternative Splicing Analysis with Expedition Reveals Splicing Dynamics during Neuron Differentiation : STAR, human genome (hg19), using GENCODE (v19) gene annotations; sailfish - GENCODE v19 protein-coding and long non-coding RNA annotation. Outrigger

2017 - Science - Single-cell RNA-seq reveals new types of human blood dendritic cells, monocytes, and progenitors : UCSC hg19 transcriptome; RSEM; TPM; 可行但是不完美,建議用count

2017 - Cell - Single-Cell Analysis of Human Pancreas Reveals Transcriptional Signatures of Aging and Somatic Mutation Patterns : cutadapt; hg19; 

2015 - Cell Stem Cell - Single-Cell Transcriptome Analysis Reveals Dynamic Changes in lncRNA Expression during Reprogramming : TopHat; mm9; Cufflinks; DESeq

2017 - Nature - : UCSC mm10 mouse transcriptome using Bowtie; RSEM

 

小結:

QC: cutadaptb不錯哦

如果只想進行定量,那就用bowtie、bowtie2比對,再用RSEM定量,這CNS用得最多;但是,單細胞能用TPM嗎?顯然不行,因為表達基因的數量差異太大了,這會帶來很嚴重的偏差。

如果想要Reads count,那還是用FeatureCounts吧。(網上貌似說FeatureCounts比HTseq算法更好一些,但是HTseq2015年發表以來,引用了3000多次了,真是糾結選哪個!!!)

參考:Compariosn Htseq And Feature Count

http://bioinformatics.cvr.ac.uk/blog/featurecounts-or-htseq-count/

http://genomespot.blogspot.hk/2014/09/read-counting-with-featurecounts.html

 

如果想鑒定可變剪切,那就必須Tophat、Hisat2和STAR中選了,Hisat2引用少得可憐;為什么大家都不用呢?STAR的引用秒殺它,Tophat就太老了,不用也罷。

 

 


免責聲明!

本站轉載的文章為個人學習借鑒使用,本站對版權不負任何法律責任。如果侵犯了您的隱私權益,請聯系本站郵箱yoyou2525@163.com刪除。



 
粵ICP備18138465號   © 2018-2025 CODEPRJ.COM