最小生成樹算法(克魯斯卡爾算法和普里姆算法)


一般最小生成樹算法分成兩種算法:

一個是克魯斯卡爾算法:這個算法的思想是利用貪心的思想,對每條邊的權值先排個序,然后每次選取當前最小的邊,判斷一下這條邊的點是否已經被選過了,也就是已經在樹內了,一般是用並查集判斷兩個點是否已經聯通了;

另一個算法是普里姆算法:這個算法長的賊像迪傑斯塔拉算法,首先選取一個點進入集合內,然后找這個點連接的點里面權值最小的點,然后每次在選取與集合內任意一點連接的點的邊的權值最小的那個(這個操作可以在松弛那里修改一下,這也是和迪傑斯塔拉算法最大的不同,你每次選取一個點后,把這個點能達到的點的那條邊的權值修改一下,而不是像迪傑斯塔拉算法那樣,松弛單點權值);

克魯斯卡爾代碼:

#include<iostream>
#include<algorithm>
#define maxn 5005
using namespace std;
struct Node
{
int x;
int y;
int w;
}node[maxn];
int cmp(Node x,Node y)
{
return x.w<y.w;
}
int fa[maxn];
int findfa(int x)
{
if(fa[x]==x)
return x;
else
return findfa(fa[x]);
}
int join(int u,int v)
{
int t1,t2;
t1=findfa(u);
t2=findfa(v);
if(t1!=t2)
{
fa[t2]=t1;
return 1;
}
else
return 0;
}
int main()
{
int i,j;
int sum;
int ans;
int n,m;
sum=0;ans=0;
cin>>n>>m;
for(i=1;i<=m;i++)
cin>>node[i].x>>node[i].y>>node[i].w;
sort(node+1,node+1+m,cmp);
for(i=1;i<=n;i++)
fa[i]=i;
for(i=1;i<=m;i++)
{
if(join(node[i].x,node[i].y))
{
sum++;
ans+=node[i].w;
}
if(sum==n-1)
break;
}
cout<<ans<<endl;
return 0;
}

普里姆算法:

#include<iostream>
#include<algorithm>
#include<cstring>
#include<cstdio>
#define inf 0x3f3f3f
using namespace std;
int Map[1005][1005];
int dist[1005];
int visit[1005];
int n,m;
int prime(int x)
{
int temp;
int lowcast;
int sum=0;
memset(visit,0,sizeof(visit));
for(int i=1;i<=n;i++)
dist[i]=Map[x][i];
visit[x]=1;
for(int i=1;i<=n-1;i++)
{
lowcast=inf;
for(int j=1;j<=n;j++)
if(!visit[j]&&dist[j]<lowcast)
{
lowcast=dist[j];
temp=j;
}
visit[temp]=1;
sum+=lowcast;
for(int j=1;j<=n;j++)
{
if(!visit[j]&&dist[j]>Map[temp][j])
dist[j]=Map[temp][j];
}
}

return sum;
}
int main()
{
int y,x,w,z;
scanf("%d%d",&n,&m);
for(int i=1;i<=n;i++)
{
for(int j=1;j<=n;j++)
{
if(i==j)
Map[i][j]=0;
else
Map[i][j]=inf;
}
}
memset(dist,inf,sizeof(dist));
for(int i=1;i<=m;i++)
{
scanf("%d%d%d",&x,&y,&w);
Map[x][y]=w;
Map[y][x]=w;
}
z=prime(1);
printf("%d\n",z);
return 0;
}

 


免責聲明!

本站轉載的文章為個人學習借鑒使用,本站對版權不負任何法律責任。如果侵犯了您的隱私權益,請聯系本站郵箱yoyou2525@163.com刪除。



 
粵ICP備18138465號   © 2018-2025 CODEPRJ.COM