numpy的scale就是 x-mean/std


>>> from sklearn import preprocessing >>> import numpy as np

>>> a=np.array([[1.0,2.0,3.0], [4.0,5.0,9.0], [20,40.0, 80.0]]) >>> scale(a, axis=0) array([[-0.87929684, -0.79227978, -0.79115821], [-0.5195845 , -0.6183647 , -0.61958173], [ 1.39888134, 1.41064448, 1.41073994]]) >>> a.std(axis=0) array([ 8.33999734, 17.24979871, 34.96982827]) >>> a.mean(axis=0) array([ 8.33333333, 15.66666667, 30.66666667]) >>> scale(a) array([[-0.87929684, -0.79227978, -0.79115821], [-0.5195845 , -0.6183647 , -0.61958173], [ 1.39888134, 1.41064448, 1.41073994]]) >>> scale(a)*a.std(axis=0)+a.mean(axis=0) array([[ 1., 2., 3.], [ 4., 5., 9.], [ 20., 40., 80.]])

 


免責聲明!

本站轉載的文章為個人學習借鑒使用,本站對版權不負任何法律責任。如果侵犯了您的隱私權益,請聯系本站郵箱yoyou2525@163.com刪除。



 
粵ICP備18138465號   © 2018-2025 CODEPRJ.COM