初探FFT在數字圖像處理中的應用
一般FFT在通信等領域都做的一維變換就能夠了。可是在圖像處理方面,須要做二維變換,這個時候就須要用到FFT2.
在利用Octave(或者matlab)里面的fft2()函數的時候,觀察頻率領域的圖像還是要點額外的技巧的.以下的圖像是我們想要的,也是我們人類才干夠理解的(圖片的中心表示低頻區域,越是遠離中心。頻率越高,這里以下圖片中,中心區域非常亮,value非常高,中心周圍越來越暗,表示低頻信號強,高頻信號慢慢減弱)

>> result = fft2(dark_channel);
>> imshow(uint8(real(result)));
直接輸出fft2的結果例如以下(正常人應該看不出什么吧~)

怎么得到之前我們給出的結果呢?
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% code writer : EOF
% code date : 2014.09.27
% code file : fft2_demo.m
% e-mail : jasonleaster@gmail.com
%
% If there is something wrong with my code, please
% touch me by e-mail. Thank you :)
%
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
clear all
clc
Original_img = imread('/home/jasonleaster/Picture/hand.png');
float_Orignal_img = double(Original_img);
F64_WHITE = 255.0;
F64_BLACK = 0.000;
Original_img_row = size(Original_img,1);
Original_img_col = size(Original_img,2);
Original_img_channel = size(Original_img,3);
for row = 1:Original_img_row
for col = 1:Original_img_col
min_piexl = F64_WHITE;
for channel = 1: Original_img_channel
if(min_piexl > Original_img(row,col,channel))
min_piexl = Original_img(row,col,channel);
end
end
dark_channel(row,col) = min_piexl;
end
end
result = fft2(dark_channel);
%spectrum = fftshift(abs(result));
spectrum = result;
figure(1);
spectrum = spectrum*255/max(spectrum(:));
imshow(spectrum);
這里一定記得fftshift,不然會出現以下的結果,低頻結果分散在四個角落

正確結果例如以下

