圖的基本算法(BFS和DFS)


圖是一種靈活的數據結構,一般作為一種模型用來定義對象之間的關系或聯系。對象由頂點(V)表示,而對象之間的關系或者關聯則通過圖的邊(E)來表示。 圖可以分為有向圖和無向圖,一般用G=(V,E)來表示圖。經常用鄰接矩陣或者鄰接表來描述一副圖。 在圖的基本算法中,最初需要接觸的就是圖的遍歷算法,根據訪問節點的順序,可分為廣度優先搜索(BFS)和深度優先搜索(DFS)。


廣度優先搜索(BFS) 廣度優先搜索在進一步遍歷圖中頂點之前,先訪問當前頂點的所有鄰接結點。 a .首先選擇一個頂點作為起始結點,並將其染成灰色,其余結點為白色。 b. 將起始結點放入隊列中。 c. 從隊列首部選出一個頂點,並找出所有與之鄰接的結點,將找到的鄰接結點放入隊列尾部,將已訪問過結點塗成黑色,沒訪問過的結點是白色。如果頂點的顏色是灰色,表示已經發現並且放入了隊列,如果頂點的顏色是白色,表示還沒有發現 d. 按照同樣的方法處理隊列中的下一個結點。 基本就是出隊的頂點變成黑色,在隊列里的是灰色,還沒入隊的是白色。 用一副圖來表達這個流程如下:

1.初始狀態,從頂點1開始,隊列={1}
2.訪問1的鄰接頂點,1出隊變黑,2,3入隊,隊列={2,3,}
3.訪問2的鄰接結點,2出隊,4入隊,隊列={3,4}
4.訪問3的鄰接結點,3出隊,隊列={4}
5.訪問4的鄰接結點,4出隊,隊列={ 空}

從頂點1開始進行廣度優先搜索:

  1. 初始狀態,從頂點1開始,隊列={1}
  2. 訪問1的鄰接頂點,1出隊變黑,2,3入隊,隊列={2,3,}
  3. 訪問2的鄰接結點,2出隊,4入隊,隊列={3,4}
  4. 訪問3的鄰接結點,3出隊,隊列={4}
  5. 訪問4的鄰接結點,4出隊,隊列={ 空} 結點5對於1來說不可達。 上面的圖可以通過如下鄰接矩陣表示:
    1 int maze[5][5] = {
    2     { 0, 1, 1, 0, 0 },
    3     { 0, 0, 1, 1, 0 },
    4     { 0, 1, 1, 1, 0 },
    5     { 1, 0, 0, 0, 0 },
    6     { 0, 0, 1, 1, 0 }
    7 };

    BFS核心代碼如下:

     1 #include <iostream>
     2 #include <queue>
     3 #define N 5
     4 using namespace std;
     5 int maze[N][N] = {
     6     { 0, 1, 1, 0, 0 },
     7     { 0, 0, 1, 1, 0 },
     8     { 0, 1, 1, 1, 0 },
     9     { 1, 0, 0, 0, 0 },
    10     { 0, 0, 1, 1, 0 }
    11 };
    12 int visited[N + 1] = { 0, };
    13 void BFS(int start)
    14 {
    15     queue<int> Q;
    16     Q.push(start);
    17     visited[start] = 1;
    18     while (!Q.empty())
    19     {
    20         int front = Q.front();
    21         cout << front << " ";
    22         Q.pop();
    23         for (int i = 1; i <= N; i++)
    24         {
    25             if (!visited[i] && maze[front - 1][i - 1] == 1)
    26             {
    27                 visited[i] = 1;
    28                 Q.push(i);
    29             }
    30         }
    31     }
    32 }
    33 int main()
    34 {
    35     for (int i = 1; i <= N; i++)
    36     {
    37         if (visited[i] == 1)
    38             continue;
    39         BFS(i);
    40     }
    41     return 0;
    42 }

    深度優先搜索(DFS) 深度優先搜索在搜索過程中訪問某個頂點后,需要遞歸地訪問此頂點的所有未訪問過的相鄰頂點。 初始條件下所有節點為白色,選擇一個作為起始頂點,按照如下步驟遍歷: a. 選擇起始頂點塗成灰色,表示還未訪問 b. 從該頂點的鄰接頂點中選擇一個,繼續這個過程(即再尋找鄰接結點的鄰接結點),一直深入下去,直到一個頂點沒有鄰接結點了,塗黑它,表示訪問過了 c. 回溯到這個塗黑頂點的上一層頂點,再找這個上一層頂點的其余鄰接結點,繼續如上操作,如果所有鄰接結點往下都訪問過了,就把自己塗黑,再回溯到更上一層。 d. 上一層繼續做如上操作,知道所有頂點都訪問過。 用圖可以更清楚的表達這個過程:

    1.初始狀態,從頂點1開始
    2.依次訪問過頂點1,2,3后,終止於頂點3
    3.從頂點3回溯到頂點2,繼續訪問頂點5,並且終止於頂點5
    4.從頂點5回溯到頂點2,並且終止於頂點2
    5.從頂點2回溯到頂點1,並終止於頂點1
    6.從頂點4開始訪問,並終止於頂點4

    從頂點1開始做深度搜索:

    1. 初始狀態,從頂點1開始
    2. 依次訪問過頂點1,2,3后,終止於頂點3
    3. 從頂點3回溯到頂點2,繼續訪問頂點5,並且終止於頂點5
    4. 從頂點5回溯到頂點2,並且終止於頂點2
    5. 從頂點2回溯到頂點1,並終止於頂點1
    6. 從頂點4開始訪問,並終止於頂點4

      上面的圖可以通過如下鄰接矩陣表示:

      1 int maze[5][5] = {
      2     { 0, 1, 1, 0, 0 },
      3     { 0, 0, 1, 0, 1 },
      4     { 0, 0, 1, 0, 0 },
      5     { 1, 1, 0, 0, 1 },
      6     { 0, 0, 1, 0, 0 }
      7 };

      DFS核心代碼如下(遞歸實現):

       1 #include <iostream>
       2 #define N 5
       3 using namespace std;
       4 int maze[N][N] = {
       5     { 0, 1, 1, 0, 0 },
       6     { 0, 0, 1, 0, 1 },
       7     { 0, 0, 1, 0, 0 },
       8     { 1, 1, 0, 0, 1 },
       9     { 0, 0, 1, 0, 0 }
      10 };
      11 int visited[N + 1] = { 0, };
      12 void DFS(int start)
      13 {
      14     visited[start] = 1;
      15     for (int i = 1; i <= N; i++)
      16     {
      17         if (!visited[i] && maze[start - 1][i - 1] == 1)
      18             DFS(i);
      19     }
      20     cout << start << " ";
      21 }
      22 int main()
      23 {
      24     for (int i = 1; i <= N; i++)
      25     {
      26         if (visited[i] == 1)
      27             continue;
      28         DFS(i);
      29     }
      30     return 0;
      31 }

      非遞歸實現如下,借助一個棧:

       1 #include <iostream>
       2 #include <stack>
       3 #define N 5
       4 using namespace std;
       5 int maze[N][N] = {
       6     { 0, 1, 1, 0, 0 },
       7     { 0, 0, 1, 0, 1 },
       8     { 0, 0, 1, 0, 0 },
       9     { 1, 1, 0, 0, 1 },
      10     { 0, 0, 1, 0, 0 }
      11 };
      12 int visited[N + 1] = { 0, };
      13 void DFS(int start)
      14 {
      15     stack<int> s;
      16     s.push(start);
      17     visited[start] = 1;
      18     bool is_push = false;
      19     while (!s.empty())
      20     {
      21         is_push = false;
      22         int v = s.top();
      23         for (int i = 1; i <= N; i++)
      24         {
      25             if (maze[v - 1][i - 1] == 1 && !visited[i])
      26             {
      27                 visited[i] = 1;
      28                 s.push(i);
      29                 is_push = true;
      30                 break;
      31             }
      32         }
      33         if (!is_push)
      34         {
      35             cout << v << " ";
      36             s.pop();
      37         }
      38 
      39     }
      40 }
      41 int main()
      42 {
      43     for (int i = 1; i <= N; i++)
      44     {
      45         if (visited[i] == 1)
      46             continue;
      47         DFS(i);
      48     }
      49     return 0;
      50 }

      有的DFS是先訪問讀取到的結點,等回溯時就不再輸出該結點,也是可以的。算法和我上面的區別就是輸出點的時機不同,思想還是一樣的。DFS在環監測和拓撲排序中都有不錯的應用。

感謝卡巴拉的樹提供的文章,本文來自於http://www.jianshu.com/p/70952b51f0c8


免責聲明!

本站轉載的文章為個人學習借鑒使用,本站對版權不負任何法律責任。如果侵犯了您的隱私權益,請聯系本站郵箱yoyou2525@163.com刪除。



 
粵ICP備18138465號   © 2018-2025 CODEPRJ.COM