1. 費馬因式分解
1> 對於任一個奇數n,n = ab = x2-y2
2> ∵ n = ab = (x+y)*(x-y)
∴ a = x + y, b = x-y
x = (a+b)/2, y = (a-b)/2 (因為n為奇數,a, b必也為奇數,所以(a+b)和(a-b)必為偶數,故能被2整除,x, y為整數,x > y)
如:1 = 1*1 = 12 – 02
3 = 3*1 = 22 – 12
5 = 5*1 = 32 – 22
7 = 7*1 = 42 – 32
9 = 3*3 = 32 – 02
2. 費馬因式分解算法
1> y2 = x2 – n
∵ x2 – n >= y2 >= 0
∴x2 >= n, x >= sqrt(n)
∴我們可以從x = sqrt(n)開始,計算x2 – n為完全平方數即可求出x, y,然后求得a, b
2> python代碼
def Fermat(num): x = int(math.sqrt(num)); if x*x < num: x += 1; #y^2 = x^2 - num while(True): y2 = x*x - num; y = int(math.sqrt(y2)); if y*y == y2: break; x += 1; return [x+y, x-y];
3>. 利用完全平方數十位和個位數值性質改進費馬因式分解算法
完全平方數的最后兩個十進制數字(個位和十位)一定是下列數對之一:{00, e1, e4, 25, o6, e9}, 證明見《完全平方數的末兩位數字類型的另一種證明》
#PerfectSquare = {00, e1, e4, 25, o6, e9} def CheckPerfectSquare(num): #tens = 3, mean it is a odd number, tens = 4, mean it is a even number, otherwise, tens equal the value digitList = [ {'unit' : 0, 'tens' : 0}, {'unit' : 1, 'tens' : 4}, {'unit' : 4, 'tens' : 4}, {'unit' : 5, 'tens' : 2}, {'unit' : 6, 'tens' : 3}, {'unit' : 9, 'tens' : 4}]; unit = num % 10; tens = (num % 100) / 10; for item in digitList: if item['unit'] == unit: if item['tens'] < 3: return item['tens'] == tens; else: #Check is odd or even number, check the first bit return item['tens'] & 1 == tens & 1; return False; def Fermat(num): x = int(math.sqrt(num)); if x*x < num: x += 1; times = 0; x0 = x; #y^2 = x^2 - num while(True): y2 = x*x - num; if CheckPerfectSquare(y2): times += 1; y = int(math.sqrt(y2)); if y*y == y2: break; x += 1; print "Loop : ", x - x0 +1, ", check perfect square :", times; print "x :", x, ", y :", y; return [x+y, x-y];
測試結果:
可以看出,用了完全平方數的性質后,將原來需要計算y的開方和比較y2的次數減少了13次(86%),我們知道計算乘法和開方式非常耗費時間的,減少這些次數后可以大大提高算法效率
4. 費馬因式分解最壞計算次數
x = (a+b)/2
∵ n = ab, b = n/a
∴ x = (a + n/a)/2
我們需求x的最大值,如果(a + n/a)是單調遞增或遞減的,我們很容易就得到x的最大值
設a >= b(b >=a 也一樣)
則 a2 >= ab = n
∴ a2 >= n (a <= n)
設f(a) = a + n/a
f(a+1) = (a+1) + n/(a+1)
f(a+1) – f(a) = (a+1) + n/(a+1) – (a + n/a)
= 1 + n/(a+1) – n/a
= [(a+1)a + na –n(a+1)]/a
= (a2 –n + a)/[a(a+1)]
∵ a2 >= n
∴ (a2 –n + a) > 0
∴f(a+1) > f(a)
∴f(a)時單調遞增的
∵a <= n
∴當a = n時,f(a)最大,x也最大,x = (n + n/n)/2 = (n+1)/2
∴費馬因式分解最大次數 = x – sqrt(n) = (n+1)/2 – sqrt(n)
5. 費馬因式分解算法和素數判定
思考:當費馬因式分解算法為最壞次數時,n是什么數
當費馬因式分解算法為最壞次數時,可知a = n, b = 1, x = (n+1)/2, y = (n-1)/2
貌似其因子為本身和1,這和素數的性質非常像,看第1部分的1到9的費馬因式分解,貌似滿足這種條件的都是素數,那么大膽猜想一下:
假設:如果奇數n的費馬因式分解式 = n*1, 那么n為一個素數
反證:n不為素數, 則x在最大值之前就使x2 – n = y2
即需證明,當n不為素數,n = ab = (x+y)(x-y), x < (n+1)/2
那么 n = ab (n > a)
根據第4部分證明知 x = (a + n/a)/2 ,且f(a) = a + n/a 是單調遞增的
∵a < n
∴f(a) < f(n) < n + n/n = n + 1
∴x < (n+1)/2
∴x不可能到最大次數,得證
增加部分code和測試如下:
if __name__ == '__main__': while(True) : num = int(raw_input("Input a odd num for fermat : ")); if(1 == num & 1): break; retList = Fermat(num); print num, "=", retList[0], "*", retList[1]; if num > 1 and 1 == retList[1]: print num, "is a prime number";