貪心算法(Greedy Algorithm)


參考:

五大常用算法之三:貪心算法

算法系列:貪心算法

貪心算法詳解

從零開始學貪心算法

 

一、基本概念:

所謂貪心算法是指,在對問題求解時,總是做出在當前看來是最好的選擇。也就是說,不從整體最優上加以考慮,他所做出的僅是在某種意義上的局部最優解。

貪心算法沒有固定的算法框架,算法設計的關鍵是貪心策略的選擇。必須注意的是,貪心算法不是對所有問題都能得到整體最優解,選擇的貪心策略必須具備無后效性,即某個狀態以后的過程不會影響以前的狀態,只與當前狀態有關。

所以對所采用的貪心策略一定要仔細分析其是否滿足無后效性。

二、貪心算法的基本思路:

    1.建立數學模型來描述問題。

    2.把求解的問題分成若干個子問題。

    3.對每一子問題求解,得到子問題的局部最優解。

    4.把子問題的解局部最優解合成原來解問題的一個解。

三、貪心算法適用的問題

      貪心策略適用的前提是:局部最優策略能導致產生全局最優解。

    實際上,貪心算法適用的情況很少。一般,對一個問題分析是否適用於貪心算法,可以先選擇該問題下的幾個實際數據進行分析,就可做出判斷。

四、貪心算法的實現框架

    從問題的某一初始解出發;

    while (能朝給定總目標前進一步)

    {

          利用可行的決策,求出可行解的一個解元素;

    }

    由所有解元素組合成問題的一個可行解;

五、貪心策略的選擇

     因為用貪心算法只能通過解局部最優解的策略來達到全局最優解,因此,一定要注意判斷問題是否適合采用貪心算法策略,找到的解是否一定是問題的最優解。

六、例題分析

    下面是一個可以試用貪心算法解的題目,貪心解的確不錯,可惜不是最優解。

    [背包問題]有一個背包,背包容量是M=150。有7個物品,物品可以分割成任意大小。

    要求盡可能讓裝入背包中的物品總價值最大,但不能超過總容量。

    物品 A B C D E F G

    重量 35 30 60 50 40 10 25

    價值 10 40 30 50 35 40 30

    分析:

    目標函數: ∑pi最大

    約束條件是裝入的物品總重量不超過背包容量:∑wi<=M( M=150)

    (1)根據貪心的策略,每次挑選價值最大的物品裝入背包,得到的結果是否最優?

    (2)每次挑選所占重量最小的物品裝入是否能得到最優解?

    (3)每次選取單位重量價值最大的物品,成為解本題的策略。

    值得注意的是,貪心算法並不是完全不可以使用,貪心策略一旦經過證明成立后,它就是一種高效的算法。

    貪心算法還是很常見的算法之一,這是由於它簡單易行,構造貪心策略不是很困難。

    可惜的是,它需要證明后才能真正運用到題目的算法中。

    一般來說,貪心算法的證明圍繞着:整個問題的最優解一定由在貪心策略中存在的子問題的最優解得來的。

    對於例題中的3種貪心策略,都是無法成立(無法被證明)的,解釋如下:

    (1)貪心策略:選取價值最大者。反例:

    W=30

    物品:A B C

    重量:28 12 12

    價值:30 20 20

    根據策略,首先選取物品A,接下來就無法再選取了,可是,選取B、C則更好。

    (2)貪心策略:選取重量最小。它的反例與第一種策略的反例差不多。

    (3)貪心策略:選取單位重量價值最大的物品。反例:

    W=30

    物品:A B C

    重量:28 20 10

    價值:28 20 10

    根據策略,三種物品單位重量價值一樣,程序無法依據現有策略作出判斷,如果選擇A,則答案錯誤。


免責聲明!

本站轉載的文章為個人學習借鑒使用,本站對版權不負任何法律責任。如果侵犯了您的隱私權益,請聯系本站郵箱yoyou2525@163.com刪除。



 
粵ICP備18138465號   © 2018-2025 CODEPRJ.COM