對於時間復雜度,我一直搞不清楚是什么回事,或者說處於最簡單的計算方式上:
常數階O(1), 對數階O(log2n), 線性階O(n), 線性對數階O(nlog2n), 平方階O(n^2), 立方階O(n^3),..., k次方階O(n^k), 指數階O(2^n) 。
其中,
1.O(n),O(n^2), 立方階O(n^3),..., k次方階O(n^k) 為多項式階時間復雜度,分別稱為一階時間復雜度,二階時間復雜度。。。。
2.O(2^n),指數階時間復雜度,該種不實用
3.對數階O(log2n), 線性對數階O(nlog2n),除了常數階以外,該種效率最高
例:算法:
for(i=1;i<=n;++i)
{
for(j=1;j<=n;++j)
{
c[ i ][ j ]=0; //該步驟屬於基本操作 執行次數:n^2
for(k=1;k<=n;++k) c[ i ][ j ]+=a[ i ][ k ]*b[ k ][ j ]; //該步驟屬於基本操作 執行次數:n^3 } } 則有 T(n)= n^2+n^3,根據上面括號里的同數量級,我們可以確定 n^3為T(n)的同數量級 則有f(n)= n^3,然后根據T(n)/f(n)求極限可得到常數c 則該算法的 時間復雜度:T(n) = O(n^3)
定義:
如果一個問題的規模是n,解這一問題的某一算法所需要的時間為T(n),它是n的某一函數 T(n)稱為這一算法的“時間復雜性”。
幾種時間復雜度的舉例:
O(1)
Temp=i;i=j;j=temp;
以上三條單個語句的頻度均為1,該程序段的執行時間是一個與問題規模n無關的常數。算法的時間復雜度為常數階,記作T(n)=O(1)。如果算法的執行時間不隨着問題規模n的增加而增長,即使算法中有上千條語句,其執行時間也不過是一個較大的常數。此類算法的時間復雜度是O(1)。
O(n^2) 交換i和j的內容
sum=0; (一次)
for(i=1;i<=n;i++) (n次 )
for(j=1;j<=n;j++) (n^2次 )
sum++; (n^2次 )
解:T(n)=2n^2+n+1 =O(n^2)
for (i=1;i<n;i++)
{
y=y+1; ①
for (j=0;j<=(2*n);j++)
x++; ②
}
解: 語句1的頻度是n-1
語句2的頻度是(n-1)*(2n+1)=2n^2-n-1
f(n)=2n^2-n-1+(n-1)=2n^2-2
該程序的時間復雜度T(n)=O(n^2).
O(n)
a=0;
b=1; ①
for (i=1;i<=n;i++) ②
{
s=a+b; ③
b=a; ④
a=s; ⑤
}
解:語句1的頻度:2,
語句2的頻度: n,
語句3的頻度: n-1,
語句4的頻度:n-1,
語句5的頻度:n-1,
T(n)=2+n+3(n-1)=4n-1=O(n).
O(log2n )
i=1; ①
while (i<=n)
i=i*2; ②
解: 語句1的頻度是1,
設語句2的頻度是f(n), 則:2^f(n)<=n;f(n)<=log2n
取最大值f(n)= log2n,
T(n)=O(log2n )
O(n^3)
for(i=0;i<n;i++)
{
for(j=0;j<i;j++)
{
for(k=0;k<j;k++)
x=x+2;
}
}
解:當i=m, j=k的時候,內層循環的次數為k當i=m時, j 可以取 0,1,...,m-1 , 所以這里最內循環共進行了0+1+...+m-1=(m-1)m/2次所以,i從0取到n, 則循環共進行了: 0+(1-1)*1/2+...+(n-1)n/2=n(n+1)(n-1)/6
所以時間復雜度為O(n^3).
下面是一些常用的記法:
訪問數組中的元素是常數時間操作,或說O(1)操作。
一個算法如 果能在每個步驟去掉一半數據元素,如二分檢索,通常它就取 O(logn)時間。
用strcmp比較兩個具有n個字符的串需要O(n)時間。
常規的矩陣乘算法是O(n^3),因為算出每個元素都需要將n對元素相乘並加到一起,所有元素的個數是n^2。
指數時間算法通常來源於需要求出所有可能結果。例如,n個元 素的集合共有2n個子集,所以要求出所有子集的算法將是O(2n)的。指數算法一般說來是太復雜了,除非n的值非常小,因為,在 這個問題中增加一個元素就導致運行時間加倍。不幸的是,確實有許多問題 (如著名的“巡回售貨員問題” ),到目前為止找到的算法都是指數的。如果我們真的遇到這種情況,通常應該用尋找近似最佳結果的算法替代之。