Given a set of words (without duplicates), find all word squares you can build from them.
A sequence of words forms a valid word square if the kth row and column read the exact same string, where 0 ≤ k < max(numRows, numColumns).
For example, the word sequence ["ball","area","lead","lady"]
forms a word square because each word reads the same both horizontally and vertically.
b a l l a r e a l e a d l a d y
Note:
- There are at least 1 and at most 1000 words.
- All words will have the exact same length.
- Word length is at least 1 and at most 5.
- Each word contains only lowercase English alphabet
a-z
.
Example 1:
Input: ["area","lead","wall","lady","ball"] Output: [ [ "wall", "area", "lead", "lady" ], [ "ball", "area", "lead", "lady" ] ] Explanation: The output consists of two word squares. The order of output does not matter (just the order of words in each word square matters).
Example 2:
Input: ["abat","baba","atan","atal"] Output: [ [ "baba", "abat", "baba", "atan" ], [ "baba", "abat", "baba", "atal" ] ] Explanation: The output consists of two word squares. The order of output does not matter (just the order of words in each word square matters).
這道題是之前那道 Valid Word Square 的延伸,由於要求出所有滿足要求的單詞平方,所以難度大大的增加了,不要幻想着可以利用之前那題的解法來暴力破解,OJ 不會答應的。那么根據以往的經驗,對於這種要打印出所有情況的題的解法大多都是用遞歸來解,那么這題的關鍵是根據前綴來找單詞,如果能利用合適的數據結構來建立前綴跟單詞之間的映射,使得我們能快速的通過前綴來判斷某個單詞是否存在,這是解題的關鍵。對於建立這種映射,這里主要有兩種方法,一種是利用 HashMap 來建立前綴和所有包含此前綴單詞的集合之前的映射,第二種方法是建立前綴樹 Trie,顧名思義,前綴樹專門就是為這種問題設計的。首先來看第一種方法,用 HashMap 來建立映射的方法,就是取出每個單詞的所有前綴,然后將該單詞加入該前綴對應的集合中去,然后建立一個空的 nxn 的 char 矩陣,其中n為單詞的長度,目標就是來把這個矩陣填滿,從0開始遍歷,先取出長度為0的前綴,即空字符串,由於在建立映射的時候,空字符串也和每個單詞的集合建立了映射,然后遍歷這個集合,用遍歷到的單詞的i位置字符,填充矩陣 mat[i][i],然后j從 i+1 出開始遍歷,對應填充矩陣 mat[i][j] 和 mat[j][i],然后根據第j行填充得到的前綴,到哈希表中查看有沒單詞,如果沒有,就 break 掉,如果有,則繼續填充下一個位置。最后如果 j==n 了,說明第0行和第0列都被填好了,再調用遞歸函數,開始填充第一行和第一列,依次類推,直至填充完成,參見代碼如下:
解法一:
class Solution { public: vector<vector<string>> wordSquares(vector<string>& words) { vector<vector<string>> res; unordered_map<string, set<string>> m; int n = words[0].size(); for (string word : words) { for (int i = 0; i < n; ++i) { string key = word.substr(0, i); m[key].insert(word); } } vector<vector<char>> mat(n, vector<char>(n)); helper(0, n, mat, m, res); return res; } void helper(int i, int n, vector<vector<char>>& mat, unordered_map<string, set<string>>& m, vector<vector<string>>& res) { if (i == n) { vector<string> out; for (int j = 0; j < n; ++j) out.push_back(string(mat[j].begin(), mat[j].end())); res.push_back(out); return; } string key = string(mat[i].begin(), mat[i].begin() + i); for (string str : m[key]) { mat[i][i] = str[i]; int j = i + 1; for (; j < n; ++j) { mat[i][j] = str[j]; mat[j][i] = str[j]; if (!m.count(string(mat[j].begin(), mat[j].begin() + i + 1))) break; } if (j == n) helper(i + 1, n, mat, m, res); } } };
下面來看建立前綴樹 Trie 的方法,這種方法的難點是看能不能熟練的寫出 Trie 的定義,還有構建過程,以及后面在遞歸函數中,如果利用前綴樹來快速查找單詞的前綴,總之,這道題是前綴樹的一種經典的應用,能白板寫出來就說明基本上已經掌握了前綴樹了,參見代碼如下:
解法二:
class Solution { public: struct TrieNode { vector<int> indexs; vector<TrieNode*> children; TrieNode(): children(26, nullptr) {} }; TrieNode* buildTrie(vector<string>& words) { TrieNode *root = new TrieNode(); for (int i = 0; i < words.size(); ++i) { TrieNode *t = root; for (int j = 0; j < words[i].size(); ++j) { if (!t->children[words[i][j] - 'a']) { t->children[words[i][j] - 'a'] = new TrieNode(); } t = t->children[words[i][j] - 'a']; t->indexs.push_back(i); } } return root; } vector<vector<string>> wordSquares(vector<string>& words) { TrieNode *root = buildTrie(words); vector<string> out(words[0].size()); vector<vector<string>> res; for (string word : words) { out[0] = word; helper(words, 1, root, out, res); } return res; } void helper(vector<string>& words, int level, TrieNode* root, vector<string>& out, vector<vector<string>>& res) { if (level >= words[0].size()) { res.push_back(out); return; } string str = ""; for (int i = 0; i < level; ++i) { str += out[i][level]; } TrieNode *t = root; for (int i = 0; i < str.size(); ++i) { if (!t->children[str[i] - 'a']) return; t = t->children[str[i] - 'a']; } for (int idx : t->indexs) { out[level] = words[idx]; helper(words, level + 1, root, out, res); } } };
Github 同步地址:
https://github.com/grandyang/leetcode/issues/425
類似題目:
參考資料:
https://leetcode.com/problems/word-squares/
https://leetcode.com/problems/word-squares/discuss/91380/java-53ms-dfs-hashmap
https://leetcode.com/problems/word-squares/discuss/91344/Short-PythonC%2B%2B-solution