- 總時間限制:
- 2000ms 內存限制:
- 65536kB
- 描述
-
一個數的序列
bi,當
b1 <
b2 < ... <
bS的時候,我們稱這個序列是上升的。對於給定的一個序列(
a1,
a2, ...,
aN),我們可以得到一些上升的子序列(
ai1,
ai2, ...,
aiK),這里1 <=
i1 <
i2 < ... <
iK <= N。比如,對於序列(1, 7, 3, 5, 9, 4, 8),有它的一些上升子序列,如(1, 7), (3, 4, 8)等等。這些子序列中最長的長度是4,比如子序列(1, 3, 5, 8).
你的任務,就是對於給定的序列,求出最長上升子序列的長度。 - 輸入
- 輸入的第一行是序列的長度N (1 <= N <= 1000)。第二行給出序列中的N個整數,這些整數的取值范圍都在0到10000。
- 輸出
- 最長上升子序列的長度。
- 樣例輸入
-
7 1 7 3 5 9 4 8
- 樣例輸出
-
4
- 來源
- 翻譯自 Northeastern Europe 2002, Far-Eastern Subregion 的比賽試題
import java.util.ArrayList; import java.util.Arrays; import java.util.Scanner; public class Main{ public static void main(String[] args) { Scanner in = new Scanner(System.in); int n = in.nextInt();//序列長度 1-1000 int[] l = new int[n],a = new int[n]; //以某一節點為重點的最長子序列的長度 for(int i =0;i<n;i++) { a[i] = in.nextInt();//輸入第i個數,下面計算它為終點的最長上升子序列 if(i==0) l[i] = 1; else { int k = 0,longest = 0; for(int j=0;j<i;j++) { if(a[j]<a[i])//比該數小的數組前面的數里 { if(k == 0) longest = l[j];//第一個比他小 else { if(l[j] > longest)//找到最長的 longest = l[j]; } k++; }//if l[i] = longest+1; }//for }//else } Arrays.sort(l); System.out.println(l[l.length-1]); } }
Summary:
This poj problem is another typical example for dynamic planning.Well, the idea is very delicate. I tried to calculate the longgest sbsequences before a certain number, but it couldn' make it out.
Then I referred to the book, which is shameful to admit, I found an only too brilliant idea which is to caculate the longgest rising subsequences's lengths of one ended with a certain number.
As always, I got WA first time the first time I submitted my answer. Oh no..
The reason for the failure lies in this sentance when initializing the value:
I wrote "longest=1"..which triggers to a fault when the number happens to find no one before it can be less than itself:
longest = 0
