最后在煉數成金那邊找到了很好的一篇教程
在這里把它整理一下
做個粒子群算法的收尾
main.m
%% I. 清空環境 clc clear %% II. 繪制目標函數曲線 figure [x,y] = meshgrid(-5:0.1:5,-5:0.1:5); z = x.^2 + y.^2 - 10*cos(2*pi*x) - 10*cos(2*pi*y) + 20; mesh(x,y,z) hold on %% III. 參數初始化 c1 = 1.49445; c2 = 1.49445; maxgen = 1000; % 進化次數 sizepop = 100; %種群規模 Vmax = 1; Vmin = -1; popmax = 5; popmin = -5; %% IV. 產生初始粒子和速度 for i = 1:sizepop % 隨機產生一個種群 pop(i,:) = 5*rands(1,2); %初始種群 V(i,:) = rands(1,2); %初始化速度 % 計算適應度 fitness(i) = fun(pop(i,:)); %染色體的適應度 end %% V. 個體極值和群體極值 [bestfitness bestindex] = max(fitness); zbest = pop(bestindex,:); %全局最佳 gbest = pop; %個體最佳 fitnessgbest = fitness; %個體最佳適應度值 fitnesszbest = bestfitness; %全局最佳適應度值 %% VI. 迭代尋優 for i = 1:maxgen for j = 1:sizepop % 速度更新 V(j,:) = V(j,:) + c1*rand*(gbest(j,:) - pop(j,:)) + c2*rand*(zbest - pop(j,:)); V(j,find(V(j,:)>Vmax)) = Vmax; V(j,find(V(j,:)<Vmin)) = Vmin; % 種群更新 pop(j,:) = pop(j,:) + V(j,:); pop(j,find(pop(j,:)>popmax)) = popmax; pop(j,find(pop(j,:)<popmin)) = popmin; % 適應度值更新 fitness(j) = fun(pop(j,:)); end for j = 1:sizepop % 個體最優更新 if fitness(j) > fitnessgbest(j) gbest(j,:) = pop(j,:); fitnessgbest(j) = fitness(j); end % 群體最優更新 if fitness(j) > fitnesszbest zbest = pop(j,:); fitnesszbest = fitness(j); end end yy(i) = fitnesszbest; end %% VII.輸出結果 [fitnesszbest, zbest] plot3(zbest(1), zbest(2), fitnesszbest,'bo','linewidth',1.5) figure plot(yy) title('最優個體適應度','fontsize',12); xlabel('進化代數','fontsize',12);ylabel('適應度','fontsize',12);
fun.m
function y = fun(x) %函數用於計算粒子適應度值 %x input 輸入粒子 %y output 粒子適應度值 y = x(1).^2 + x(2).^2 - 10*cos(2*pi*x(1)) - 10*cos(2*pi*x(2)) + 20;