阻抗匹配
阻抗匹配是指在能量傳輸時,要求負載阻抗要和傳輸線的特征阻抗相等,此時的傳輸不會產生反射,這表明所有能量都被負載吸收了。反之則在傳輸中有能量損失。在高速PCB設計中,阻抗的匹配與否關系到信號的質量優劣。
PCB走線什么時候需要做阻抗匹配?
不主要看頻率,而關鍵是看信號的邊沿陡峭程度,即信號的上升/下降時間,一般認為如果信號的上升/下降時間(按10%~90%計)小於6倍導線延時,就是高速信號,必須注意阻抗匹配的問題。導線延時一般取值為150ps/inch。
特征阻抗
信號沿傳輸線傳播過程當中,如果傳輸線上各處具有一致的信號傳播速度,並且單位長度上的電容也一樣,那么信號在傳播過程中總是看到完全一致的瞬間阻抗。由於在整個傳輸線上阻抗維持恆定不變,我們給出一個特定的名稱,來表示特定的傳輸線的這種特征或者是特性,稱之為該傳輸線的特征阻抗。特征阻抗是指信號沿傳輸線傳播時,信號看到的瞬間阻抗的值。特征阻抗與PCB導線所在的板層、PCB所用的材質(介電常數)、走線寬度、導線與平面的距離等因素有關,與走線長度無關。特征阻抗可以使用軟件計算。高速PCB布線中,一般把數字信號的走線阻抗設計為50歐姆,這是個大約的數字。一般規定同軸電纜基帶50歐姆,頻帶75歐姆,對絞線(差分)為100歐姆。
常見阻抗匹配的方式
1、串聯終端匹配
在信號源端阻抗低於傳輸線特征阻抗的條件下,在信號的源端和傳輸線之間串接一個電阻R,使源端的輸出阻抗與傳輸線的特征阻抗相匹配,抑制從負載端反射回來的信號發生再次反射。
匹配電阻選擇原則:匹配電阻值與驅動器的輸出阻抗之和等於傳輸線的特征阻抗。常見的CMOS和TTL驅動器,其輸出阻抗會隨信號的電平大小變化而變化。因此,對TTL或CMOS電路來說,不可能有十分正確的匹配電阻,只能折中考慮。鏈狀拓撲結構的信號網路不適合使用串聯終端匹配,所有的負載必須接到傳輸線的末端。
串聯匹配是最常用的終端匹配方法。它的優點是功耗小,不會給驅動器帶來額外的直流負載,也不會在信號和地之間引入額外的阻抗,而且只需要一個電阻元件。
常見應用:一般的CMOS、TTL電路的阻抗匹配。USB信號也采樣這種方法做阻抗匹配。
2、並聯終端匹配
在信號源端阻抗很小的情況下,通過增加並聯電阻使負載端輸入阻抗與傳輸線的特征阻抗相匹配,達到消除負載端反射的目的。實現形式分為單電阻和雙電阻兩種形式。
匹配電阻選擇原則:在芯片的輸入阻抗很高的情況下,對單電阻形式來說,負載端的並聯電阻值必須與傳輸線的特征阻抗相近或相等;對雙電阻形式來說,每個並聯電阻值為傳輸線特征阻抗的兩倍。
並聯終端匹配優點是簡單易行,顯而易見的缺點是會帶來直流功耗:單電阻方式的直流功耗與信號的占空比緊密相關;雙電阻方式則無論信號是高電平還是低電平都有直流功耗,但電流比單電阻方式少一半。
常見應用:以高速信號應用較多。
(1)DDR、DDR2等SSTL驅動器。采用單電阻形式,並聯到VTT(一般為IOVDD的一半)。其中DDR2數據信號的並聯匹配電阻是內置在芯片中的。
(2)TMDS等高速串行數據接口。采用單電阻形式,在接收設備端並聯到IOVDD,單端阻抗為50歐姆(差分對間為100歐姆)。
==========================================================================
怎樣理解阻抗匹配?
阻抗匹配是指信號源或者傳輸線跟負載之間的一種合適的搭配方式。阻抗匹配分為低頻和高頻兩種情況討論。
我們先從直流電壓源驅動一個負載入手。由於實際的電壓源,總是有內阻的(請參看輸出阻抗一問),我們可以把一個實際電壓源,等效成一個理想的電壓源跟一個電阻r串聯的模型。假設負載電阻為R,電源電動勢為U,內阻為r,那么我們可以計算出流過電阻R的電流為:I=U/(R+r),可以看出,負載電阻R越小,則輸出電流越大。負載R上的電壓為:Uo=IR=U*[1+(r/R)],可以看出,負載電阻R越大,則輸出電壓Uo越高。再來計算一下電阻R消耗的功率為:
P=I*I*R=[U/(R+r)]*[U/(R+r)]*R=U*U*R/(R*R+2*R*r+r*r)
=U*U*R/[(R-r)*(R-r)+4*R*r]
=U*U/{[(R-r)*(R-r)/R]+4*r}
對於一個給定的信號源,其內阻r是固定的,而負載電阻R則是由我們來選擇的。注意式中[(R-r)*(R-r)/R],當R=r時,[(R-r)*(R-r)/R]可取得最小值0,這時負載電阻R上可獲得最大輸出功率Pmax=U*U/(4*r)。即,當負載電阻跟信號源內阻相等時,負載可獲得最大輸出功率,這就是我們常說的阻抗匹配之一。對於純電阻電路,此結論同樣適用於低頻電路及高頻電路。當交流電路中含有容性或感性阻抗時,結論有所改變,就是需要信號源與負載阻抗的的實部相等,虛部互為相反數,這叫做共厄匹配。在低頻電路中,我們一般不考慮傳輸線的匹配問題,只考慮信號源跟負載之間的情況,因為低頻信號的波長相對於傳輸線來說很長,傳輸線可以看成是“短線”,反射可以不考慮(可以這么理解:因為線短,即使反射回來,跟原信號還是一樣的)。從以上分析我們可以得出結論:如果我們需要輸出電流大,則選擇小的負載R;如果我們需要輸出電壓大,則選擇大的負載R;如果我們需要輸出功率最大,則選擇跟信號源內阻匹配的電阻R。有時阻抗不匹配還有另外一層意思,例如一些儀器輸出端是在特定的負載條件下設計的,如果負載條件改變了,則可能達不到原來的性能,這時我們也會叫做阻抗失配。
在高頻電路中,我們還必須考慮反射的問題。當信號的頻率很高時,則信號的波長就很短,當波長短得跟傳輸線長度可以比擬時,反射信號疊加在原信號上將會改變原信號的形狀。如果傳輸線的特征阻抗跟負載阻抗不匹配(相等)時,在負載端就會產生反射。為什么阻抗不匹配時會產生反射以及特征阻抗的求解方法,牽涉到二階偏微分方程的求解,在這里我們不細說了,有興趣的可參看電磁場與微波方面書籍中的傳輸線理論。傳輸線的特征阻抗(也叫做特性阻抗)是由傳輸線的結構以及材料決定的,而與傳輸線的長度,以及信號的幅度、頻率等均無關。例如,常用的閉路電視同軸電纜特性阻抗為75歐,而一些射頻設備上則常用特征阻抗為50歐的同軸電纜。另外還有一種常見的傳輸線是特性阻抗為300歐的扁平平行線,這在農村使用的電視天線架上比較常見,用來做八木天線的饋線。因為電視機的射頻輸入端輸入阻抗為75歐,所以300歐的饋線將與其不能匹配。實際中是如何解決這個問題的呢?不知道大家有沒有留意到,電視機的附件中,有一個300歐到75歐的阻抗轉換器(一個塑料包裝的,一端有一個圓形的插頭的那個東東,大概有兩個大拇指那么大的)?它里面其實就是一個傳輸線變壓器,將300歐的阻抗,變換成75歐的,這樣就可以匹配起來了。這里需要強調一點的是,特性阻抗跟我們通常理解的電阻不是一個概念,它與傳輸線的長度無關,也不能通過使用歐姆表來測量。為了不產生反射,負載阻抗跟傳輸線的特征阻抗應該相等,這就是傳輸線的阻抗匹配。如果阻抗不匹配會有什么不良后果呢?如果不匹配,則會形成反射,能量傳遞不過去,降低效率;會在傳輸線上形成駐波(簡單的理解,就是有些地方信號強,有些地方信號弱),導致傳輸線的有效功率容量降低;功率發射不出去,甚至會損壞發射設備。如果是電路板上的高速信號線與負載阻抗不匹配時,會產生震盪,輻射干擾等。
當阻抗不匹配時,有哪些辦法讓它匹配呢?第一,可以考慮使用變壓器來做阻抗轉換,就像上面所說的電視機中的那個例子那樣。第二,可以考慮使用串聯/並聯電容或電感的辦法,這在調試射頻電路時常使用。第三,可以考慮使用串聯/並聯電阻的辦法。一些驅動器的阻抗比較低,可以串聯一個合適的電阻來跟傳輸線匹配,例如高速信號線,有時會串聯一個幾十歐的電阻。而一些接收器的輸入阻抗則比較高,可以使用並聯電阻的方法,來跟傳輸線匹配,例如,485總線接收器,常在數據線終端並聯120歐的匹配電阻。
為了幫助大家理解阻抗不匹配時的反射問題,我來舉兩個例子:假設你在練習拳擊——打沙包。如果是一個重量合適的、硬度合適的沙包,你打上去會感覺很舒服。但是,如果哪一天我把沙包做了手腳,例如,里面換成了鐵沙,你還是用以前的力打上去,你的手可能就會受不了了——這就是負載過重的情況,會產生很大的反彈力。相反,如果我把里面換成了很輕很輕的東西,你一出拳,則可能會撲空,手也可能會受不了——這就是負載過輕的情況。另一個例子,不知道大家有沒有過這樣的經歷:就是看不清樓梯時上/下樓梯,當你以為還有樓梯時,就會出現“負載不匹配”這樣的感覺了。當然,也許這樣的例子不太恰當,但我們可以拿它來理解負載不匹配時的反射情況。
==========================================================================
作者:老楊(武漢)
由於普通的傳輸線阻抗Z0通常在 50Ω左右,而負載阻抗通常在幾千歐姆到幾十千歐姆。因此,在負載端實現阻抗匹配比較困難。然而,由於信號源端(輸出)阻抗通常比較小,大致為十幾歐姆。因此在源端實現阻抗匹配要容易的多。如果在負載端並接電阻,電阻會吸收部分信號對傳輸不利(我的理解).
當選擇TTL/CMOS標准 24mA驅動電流時,其輸出阻抗大致為13Ω。若傳輸線阻抗Z0=50Ω,那么應該加一個33Ω的源端匹配電阻。13Ω+33Ω=46Ω (近似於50Ω,弱的欠阻尼有助於信號的setup時間)
當選擇其他傳輸標准和驅動電流時,匹配阻抗會有差異。在高速的邏輯和電路設計時,對一些關鍵的信號,如時鍾、控制信號等,我們建議一定要加源端匹配電阻。
這樣接了信號還會從負載端反射回來,因為源端阻抗匹配,反射回來的信號不會再反射回去。
==========================================================================
書上說: 當 RL == R0 時 ,RL上可以得到最大功率, 但從電源效率考慮,這時負載RL 的效率只有 50% 呀(R0 效率 占另外的50%對吧) ,在實際的電路設計中時必須做到阻抗匹配嗎??要是這樣的話那 對電源的利用率不是太小了莫??
我說的對嗎
大家的看法是怎樣的??
作者 IC921
不同場合的“匹配”要求不一樣
如果要求電源使用效率高,阻抗應該盡量小---此處的關鍵要求是耗電所做出的功。
如果要求發出功率高,如題----此處的關鍵是負載獲得功率要盡量大。
如果是高頻傳輸線,要求不能有反射,則線路阻抗(阻性)和終端阻抗相等(阻性)----此處的關鍵目標是不能有或盡量減少反射。
如果是放大器,往往要求不影響源---此時特別要求低輸入電流(輸入阻抗盡量大)
你看看還有什么?提出來大家集中認識一下。我想偏離了上述環境要求,無從談起“匹配”是何物。
==========================================================================
高速信號有效的建立保持窗口比較小,要讓數據和控制信號都落在有效窗口內,數據、時鍾或數據之間、控制信號之間的走線長度差異就很小。具體允許的偏差可以通過計算時延來得到。
其實一般來說,時序邏輯信號要滿足建立時間和保持時間並有一定的余量。只要滿足這個條件,信號是可以不嚴格等長的。然而,實際情況是,對於高速信號來說(例如DDR2、DDR3、FSB),在設計的時候是無法知道時序是否滿足建立時間和保持時間要求(影響因素太多,包括芯片內部走線和容性負載造成的延時差別都要考慮,很難通過計算估算出實際值),必須在芯片內部設置可控延時器件(通過寄存器控制延時),然后掃描寄存器的值來嘗試各種延時,並通過觀察信號(直接看波形,測量建立保持時間)來確定延時的值使其滿足建立時間和保持時間要求。不過同一類信號一般只對其中一根或幾根信號線來做這種觀察,為了使所有信號都滿足時序要求,只好規定同一類信號走線全部嚴格等長。
上面說的是高速並行信號。對於高速的串行信號,如果是帶時鍾的,時鍾和串行數據也必須滿足建立保持時間要求,所以也要控制好長度。
有些高速串行信號雖然帶時鍾,但這個時鍾不是用來鎖存數據而是一個頻率較低的參考時鍾,那么數據和時鍾以及多個通道之間的數據的skew就可以寬松很多,不用嚴格等長,因為接收芯片是能夠正確找出每個通道的起始位並且把參考時鍾經過PLL倍頻和相移來鎖存數據的。例如TMDS信號,串行數據的差分對之間要嚴格等長,但數據之間的skew放寬到+/-20%的時鍾周期。不過為了避免不必要的問題,一般來說像TMDS、PCI-E這些串行信號,通道間一般也要做等長,不過允許的偏差可以比較大,例如200ps以上。
至於低速信號,其建立保持窗口一般在ns級以上,這樣就沒必要做長度控制了,因為無論布線怎么差也很難搞出ns級的skew。