#np.random.normal,產生制定分布的數集(默認是標准正態分布)


http://docs.scipy.org/doc/numpy/reference/generated/numpy.random.normal.html

 

 

#np.random.normal,產生制定分布的數集
#http://docs.scipy.org/doc/numpy/reference/generated/numpy.random.normal.html
# mean and standard deviation
# 均值的物理意義mu,Mean (“centre”) of the distribution.
# 方差的物理意義sigma,Standard deviation (spread or “width”) of the distribution
import numpy as np

mu, sigma = 0, 0.1
s = np.random.normal(mu, sigma, 1000)

#驗證均值和方差,是否和隨機生成的一樣
print(abs(mu - np.mean(s)) < 0.01)
print(abs(sigma - np.std(s, ddof=1)) < 0.01) #ddof不知道什么意思


import matplotlib.pyplot as plt

count, bins, ignored = plt.hist(s, 10, normed=True)
plt.plot(bins, 1/(sigma * np.sqrt(2 * np.pi)) *np.exp( - (bins - mu)**2 / (2 * sigma**2) ),linewidth=2, color='r')
plt.show()

numpy.random.normal

numpy.random. normal ( loc=0.0, scale=1.0, size=None )

Draw random samples from a normal (Gaussian) distribution.

The probability density function of the normal distribution, first derived by De Moivre and 200 years later by both Gauss and Laplace independently [R250], is often called the bell curve because of its characteristic shape (see the example below).

The normal distributions occurs often in nature. For example, it describes the commonly occurring distribution of samples influenced by a large number of tiny, random disturbances, each with its own unique distribution [R250].

 

Parameters:

loc : float

Mean (“centre”) of the distribution.

scale : float

Standard deviation (spread or “width”) of the distribution.

size : int or tuple of ints, optional

Output shape. If the given shape is, e.g., (m, n, k), then m * n * k samples are drawn. Default is None, in which case a single value is returned.

 


免責聲明!

本站轉載的文章為個人學習借鑒使用,本站對版權不負任何法律責任。如果侵犯了您的隱私權益,請聯系本站郵箱yoyou2525@163.com刪除。



 
粵ICP備18138465號   © 2018-2025 CODEPRJ.COM