貝葉斯公式的理解方式


貝葉斯公式是怎么來的?

我們還是使用 wikipedia 上的一個例子:

一所學校里面有 60% 的男生,40% 的女生。男生總是穿長褲,女生則一半穿長褲一半穿裙子。有了這些信息之后我們可以容易地計算“隨機選取一個學生,他(她)穿長褲的概率和穿裙子的概率是多大”,這個就是前面說的“正向概率”的計算。然而,假設你走在校園中,迎面走來一個穿長褲的學生(很不幸的是你高度近似,你只看得見他(她)穿的是否長褲,而無法確定他(她)的性別),你能夠推斷出他(她)是男生的概率是多大嗎?

一些認知科學的研究表明(《決策與判斷》以及《Rationality for Mortals》第12章:小孩也可以解決貝葉斯問題),我們對形式化的貝葉斯問題不擅長,但對於以頻率形式呈現的等價問題卻很擅長。在這里,我們不妨把問題重新敘述成:你在校園里面隨機游走,遇到了 N 個穿長褲的人(仍然假設你無法直接觀察到他們的性別),問這 N 個人里面有多少個女生多少個男生。

你說,這還不簡單:算出學校里面有多少穿長褲的,然后在這些人里面再算出有多少女生,不就行了?

我們來算一算:假設學校里面人的總數是 U 個。60% 的男生都穿長褲,於是我們得到了 U * P(Boy) * P(Pants|Boy) 個穿長褲的(男生)(其中 P(Boy) 是男生的概率 = 60%,這里可以簡單的理解為男生的比例;P(Pants|Boy) 是條件概率,即在 Boy 這個條件下穿長褲的概率是多大,這里是 100% ,因為所有男生都穿長褲)。40% 的女生里面又有一半(50%)是穿長褲的,於是我們又得到了 U * P(Girl) * P(Pants|Girl) 個穿長褲的(女生)。加起來一共是 U * P(Boy) * P(Pants|Boy) + U * P(Girl) * P(Pants|Girl) 個穿長褲的,其中有 U * P(Girl) * P(Pants|Girl) 個女生。兩者一比就是你要求的答案。

下面我們把這個答案形式化一下:我們要求的是 P(Girl|Pants) (穿長褲的人里面有多少女生),我們計算的結果是 U * P(Girl) * P(Pants|Girl) / [U * P(Boy) * P(Pants|Boy) + U * P(Girl) * P(Pants|Girl)] 。容易發現這里校園內人的總數是無關的,可以消去。於是得到

注意,如果把上式收縮起來,分母其實就是 P(Pants) ,分子其實就是 P(Pants, Girl) 。而這個比例很自然地就讀作:在穿長褲的人( P(Pants) )里面有多少(穿長褲)的女孩( P(Pants, Girl) )。

上式中的 Pants 和 Boy/Girl 可以指代一切東西,所以其一般形式就是:

P(B|A) = P(A|B) * P(B) / [P(A|B) * P(B) + P(A|~B) * P(~B) ]

收縮起來就是:

P(B|A) = P(AB) / P(A)

其實這個就等於:

P(B|A) * P(A) = P(AB)

難怪拉普拉斯說概率論只是把常識用數學公式表達了出來

詳見:http://mindhacks.cn/2008/09/21/the-magical-bayesian-method/


免責聲明!

本站轉載的文章為個人學習借鑒使用,本站對版權不負任何法律責任。如果侵犯了您的隱私權益,請聯系本站郵箱yoyou2525@163.com刪除。



 
粵ICP備18138465號   © 2018-2025 CODEPRJ.COM