POJ2488-A Knight's Journey(DFS+回溯)


題目鏈接:http://poj.org/problem?id=2488

A Knight's Journey
Time Limit: 1000MS   Memory Limit: 65536K
Total Submissions: 36695   Accepted: 12462

Description

Background 
The knight is getting bored of seeing the same black and white squares again and again and has decided to make a journey 
around the world. Whenever a knight moves, it is two squares in one direction and one square perpendicular to this. The world of a knight is the chessboard he is living on. Our knight lives on a chessboard that has a smaller area than a regular 8 * 8 board, but it is still rectangular. Can you help this adventurous knight to make travel plans? 

Problem 
Find a path such that the knight visits every square once. The knight can start and end on any square of the board.

Input

The input begins with a positive integer n in the first line. The following lines contain n test cases. Each test case consists of a single line with two positive integers p and q, such that 1 <= p * q <= 26. This represents a p * q chessboard, where p describes how many different square numbers 1, . . . , p exist, q describes how many different square letters exist. These are the first q letters of the Latin alphabet: A, . . .

Output

The output for every scenario begins with a line containing "Scenario #i:", where i is the number of the scenario starting at 1. Then print a single line containing the lexicographically first path that visits all squares of the chessboard with knight moves followed by an empty line. The path should be given on a single line by concatenating the names of the visited squares. Each square name consists of a capital letter followed by a number. 
If no such path exist, you should output impossible on a single line.

Sample Input

3
1 1
2 3
4 3

Sample Output

Scenario #1:
A1

Scenario #2:
impossible

Scenario #3:
A1B3C1A2B4C2A3B1C3A4B2C4

 
        

題目大意: 任選一個起點,按照國際象棋馬的跳法,不重復的跳完整個棋盤,如果有多種路線則選擇字典序最小的路線(路線是點的橫縱坐標的集合,注意棋盤的橫坐標的用大寫字母,縱坐標是數字)

題目分析: 

1. 應該看到這個題就可以想到用DFS,當首先要明白這個題的意思是能否只走一遍(不回頭不重復)將整個地圖走完,而普通的深度優先搜索是一直走,走不通之后沿路返回到某處繼續深搜。所以這個題要用到的回溯思想,如果不重復走一遍就走完了,做一個標記,算法停止;否則在某種DFS下走到某一步時按馬跳的規則無路可走而棋盤還有為走到的點,這樣我們就需要撤消這一步,進而嘗試其他的路線(當然其他的路線也可能導致撤銷),而所謂撤銷這一步就是在遞歸深搜返回時重置該點,以便在當前路線走一遍行不通換另一種路線時,該點的狀態是未訪問過的,而不是像普通的DFS當作已經訪問了。

2. 如果有多種方式可以不重復走一遍的走完,需要輸出按字典序最小的路徑,而注意到國際象棋的棋盤是列為字母,行為數字,如果能夠不回頭走一遍的走完,一定會經過A1點,所以我們應該從A1開始搜索,以確保之后得到的路徑字典序是最小的(也就是說如果路徑不以A1開始,該路徑一定不是字典序最小路徑),而且我們應該確保優先選擇的方向是字典序最小的方向,這樣我們最先得到的路徑就是字典序最小的。

參考代碼:

 

#include <cstdio>
#include <cstring>

using namespace std;

const int MAX_N = 27;
//字典序最小的行走方向
const int dx[8] = {-1, 1, -2, 2, -2, 2, -1, 1}; 
const int dy[8] = {-2, -2, -1, -1, 1, 1, 2, 2};
bool visited[MAX_N][MAX_N];
struct Step{
    char x, y;
} path[MAX_N];
bool success;           //是否成功遍歷的標記
int cases, p, q;

void DFS(int x, int y, int num);

int main()
{
    scanf("%d", &cases);
    for (int c = 1; c <= cases; c++)
    {
        success = false;
        scanf("%d%d", &p, &q);
        memset(visited, false, sizeof(visited));
        visited[1][1] = true;    //起點
        DFS(1, 1, 1);              
        printf("Scenario #%d:\n", c);
        if (success)
        {
            for (int i = 1; i <= p * q; i++)
                printf("%c%c", path[i].y, path[i].x);
            printf("\n");
        }
        else
            printf("impossible\n");
        if (c != cases)
            printf("\n");      //注意該題的換行
    }
    return 0;
}

void DFS(int x, int y, int num)
{
    path[num].y = y + 'A' - 1;   //int 轉為 char
    path[num].x = x + '0';
    if (num == p * q) 
    {
        success = true;
        return;
    }
    for (int i = 0; i < 8; i++)
    {
        int nx = x + dx[i];
        int ny = y + dy[i];
        if (0 < nx && nx <= p && 0 < ny && ny <= q
            && !visited[nx][ny] && !success)
        {
            visited[nx][ny] = true;
            DFS(nx, ny, num+1);
            visited[nx][ny] = false;    //撤銷該步
        }
    }
}

 

 

 

 

 


免責聲明!

本站轉載的文章為個人學習借鑒使用,本站對版權不負任何法律責任。如果侵犯了您的隱私權益,請聯系本站郵箱yoyou2525@163.com刪除。



 
粵ICP備18138465號   © 2018-2025 CODEPRJ.COM