An AVL tree is a self-balancing binary search tree. In an AVL tree, the heights of the two child subtrees of any node differ by at most one; if at any time they differ by more than one, rebalancing is done to restore this property. Figures 1-4 illustrate the rotation rules.




Now given a sequence of insertions, you are supposed to tell the root of the resulting AVL tree.
Input Specification:
Each input file contains one test case. For each case, the first line contains a positive integer N (<=20) which is the total number of keys to be inserted. Then N distinct integer keys are given in the next line. All the numbers in a line are separated by a space.
Output Specification:
For each test case, print ythe root of the resulting AVL tree in one line.
Sample Input 1:5 88 70 61 96 120Sample Output 1:
70Sample Input 2:
7 88 70 61 96 120 90 65Sample Output 2:
88
題意:將輸入調整為平衡二叉樹(AVL),輸出根結點元素
解題思路:判斷插入結點對現有結點的平衡因子的影響,進而進行LL,LR,RL,RR旋轉
假設三個結點連接關系為A->B->C,C為新插入結點並使得A的平衡因子==2
若C在A的左孩子的左子樹上,則對A與B進行LL旋轉
若C在A的左孩子的右子樹上,則對A,B,C進行LR旋轉,可分解為首先對B與C進行RR旋轉,再對A與C進行LL旋轉
若C在A的右孩子的右子樹上,則對A與B進行RR旋轉
若C在A的右孩子的左子樹上,則對A,B,C進行RL旋轉,可分解為首先對B與C進行LL旋轉,再對A與C進行RR旋轉
#include <iostream> #include <string> typedef struct AVLTreeNode{ int Data; AVLTreeNode *Left; AVLTreeNode *Right; int Height; }nAVLTree ,*pAVLTree; pAVLTree AVLInsertion( int nodeValue, pAVLTree pAvl ); int GetALVHeight( pAVLTree ); pAVLTree SingleLeftRotation( pAVLTree ); pAVLTree DoubleLeftRotation( pAVLTree ); pAVLTree SingleRightRotation( pAVLTree ); pAVLTree DoubleRightRotation( pAVLTree ); int Max( int hight1, int hight2 ); using namespace std; int main() { int num; int i; int value; pAVLTree pAvl; pAvl = NULL; cin >> num; for ( i = 0; i < num; i++ ) { cin >> value; pAvl = AVLInsertion( value, pAvl); } cout << pAvl->Data; } pAVLTree AVLInsertion( int nodeValue, pAVLTree pAvl ) { if ( pAvl == NULL ) { pAvl = ( pAVLTree )malloc( sizeof( nAVLTree ) ); pAvl->Left = pAvl->Right = NULL; pAvl->Data = nodeValue; pAvl->Height = 0; } else if ( nodeValue < pAvl->Data ) { pAvl->Left = AVLInsertion( nodeValue, pAvl->Left ); if ( GetALVHeight( pAvl->Left ) - GetALVHeight( pAvl->Right ) == 2 ) { if ( nodeValue < pAvl->Left->Data ) { pAvl = SingleLeftRotation( pAvl ); } else { pAvl = DoubleLeftRotation( pAvl ); } } } else if ( nodeValue > pAvl->Data ) { pAvl->Right = AVLInsertion( nodeValue, pAvl->Right ); if ( GetALVHeight( pAvl->Right ) - GetALVHeight( pAvl->Left ) == 2 ) { if ( nodeValue > pAvl->Right->Data ) { pAvl = SingleRightRotation( pAvl ); } else { pAvl = DoubleRightRotation( pAvl ); } } } pAvl->Height = Max( GetALVHeight( pAvl->Left ), GetALVHeight( pAvl->Right ) ) + 1; return pAvl; } pAVLTree SingleLeftRotation( pAVLTree A ) { pAVLTree B = A->Left; A->Left = B->Right; B->Right = A; A->Height = Max( GetALVHeight( A->Left ), GetALVHeight( A->Right ) ) + 1; B->Height = Max( GetALVHeight( B->Left ), A->Height ) + 1; return B; } pAVLTree DoubleLeftRotation( pAVLTree A ) { A->Left = SingleRightRotation( A->Left ); return SingleLeftRotation( A ); } pAVLTree SingleRightRotation( pAVLTree A ) { pAVLTree B = A->Right; A->Right = B->Left; B->Left = A; A->Height = Max( GetALVHeight( A->Left ), GetALVHeight( A->Right ) ) + 1; B->Height = Max( GetALVHeight( B->Right ), A->Height ) + 1; return B; } pAVLTree DoubleRightRotation( pAVLTree A ) { A->Right = SingleLeftRotation( A->Right ); return SingleRightRotation( A ); } int GetALVHeight( pAVLTree pAvl) { if ( pAvl == NULL ) { return 0; } else { return pAvl->Height; } } int Max( int hight1, int hight2 ) { return hight1 > hight2 ? hight1 : hight2; }