斐波那契數列定義:From Wikipedia, the free encyclopedia
http://en.wikipedia.org/wiki/Fibonacci_number
In mathematics, the Fibonacci numbers or Fibonacci sequence are the numbers in the following integer sequence:[2][3]
or (often, in modern usage):
By definition, the first two numbers in the Fibonacci sequence are 1 and 1, or 0 and 1, depending on the chosen starting point of the sequence, and each subsequent number is the sum of the previous two.
In mathematical terms, the sequence Fn of Fibonacci numbers is defined by the recurrence relation
or[4]
本例以后一種為例:
最簡單的一種:兩層遞歸
public static long fibonacci(int n){ if(n==0) return 0; else if(n==1) return 1; else return fibonacci(n-1)+fibonacci(n-2); }
問題是:隨着n的數值逐漸增多,時間和空間耗費太大,讀者可以自行實驗。在我的機器上n=50時就不能忍受了。
考慮優化:一層遞歸
public static void main(String[] args) { long tmp=0; // TODO Auto-generated method stub int n=10; Long start=System.currentTimeMillis(); for(int i=0;i<n;i++){ System.out.print(fibonacci(i)+" "); } System.out.println("-------------------------"); System.out.println("耗時:"+(System.currentTimeMillis()-start)); } public static long fibonacci(int n) { long result = 0; if (n == 0) { result = 0; } else if (n == 1) { result = 1; tmp=result; } else { result = tmp+fibonacci(n - 2); tmp=result; } return result; }
遞歸時間減少了到不到50%
最好的方式,不使用遞歸的方式來做。
public static long fibonacci(int n){ long before=0,behind=0; long result=0; for(int i=0;i<n;i++){ if(i==0){ result=0; before=0; behind=0; } else if(i==1){ result=1; before=0; behind=result; }else{ result=before+behind; before=behind; behind=result; } } return result; }