上一節講的是雙曲拋物面,這節講與之類似的橢圓拋物面.
拋物面是二次曲面的一種。拋物面有兩種:橢圓拋物面和雙曲拋物面。
橢圓拋物面在笛卡兒坐標系中的方程為:
雙曲拋物面在笛卡兒坐標系中的方程為:
本文將展示幾種生成橢圓拋物面算法和切圖.使用自己定義語法的腳本代碼生成數學圖形.相關軟件參見:數學圖形可視化工具,該軟件免費開源.QQ交流群: 367752815
(1)參數方程
#http://www.mathcurve.com/surfaces/alysseid/alysseid.shtml vertices = D1:100 D2:100 v = from 0 to (PI*2) D1 u = from 0 to 5 D2 a = 2.0 x = u*cos(v) y = 10 - pow(u, a) z = u*sin(v)
(2)普通方程
vertices = dimension1:101 dimension2:101 x = from (-100) to (100) dimension1 z = from (-100) to (100) dimension2 y = (20000 - x^2 - z^2)*0.005 u = x/10 v = z/10
(3)橢圓
vertices = D1:100 D2:100 u = from 0 to (2*PI) D1 v = from 0 to 5 D2 a = rand2(1, 10) b = rand2(1, 10) x = v*a*cos(u) y = v*v/2 z = v*b*sin(u)
(4)將拋物線繞中軸旋轉生成的橢圓拋物面
vertices = D1:512 D2:100 u = from 0 to 5 D1 v = from 0 to (2*PI) D2 a = rand2(-1, 1) x = u*cos(v) y = a*(u*u - 25) z = u*sin(v) v = v*2