前言
手勢識別非常重要的一個特點是要體驗要好,即需要以用戶為核心。而手勢的定位一般在手勢識別過程的前面,在上一篇博文Kinect+OpenNI學習筆記之8(Robert Walter手部提取代碼的分析) 中已經介紹過怎樣獲取手勢區域,且取得了不錯的效果,但是那個手勢部位的提取有一個大的缺點,即需要人站立起來,當站立起來后才能夠分隔出手。而手勢在人之間的交流時,並不一定要處於站立狀態,所以這不是一個好的HCI。因此本文介紹的手勢部位的提取並不需要人處於站立狀態,同樣取得了不錯的效果。
實驗說明
其實,本實驗實現的過程非常簡單。首先通過手部的跟蹤來獲取手所在的坐標,手部跟蹤可以參考本人前面的博文:Kinect+OpenNI學習筆記之7(OpenNI自帶的類實現手部跟蹤)。當定位到手所在的坐標后,因為該坐標是3D的,因此在該坐標領域的3維空間領域內提取出手的部位即可,整個過程的大概流程圖如下:
OpenCV知識點總結:
調用Mat::copyTo()函數時,如果需要有mask操作,則不管源圖像是多少通道的,其mask矩陣都要定義為單通道,另外可以對一個mask矩陣畫一個填充的矩形來達到使mask矩陣中對應ROI的位置的值為設定值,這樣就不需要去一一掃描賦值了。
在使用OpenCV的Mat矩陣且需要對該矩陣進行掃描時,一定要注意其取值順序,比如說列和行的順序,如果弄反了,則經常會報內存錯誤。
實驗結果
本實驗並不要求人的手一定要放在人體的前面,且也不需要人一定是處在比較簡單的背景環境中,本實驗結果允許人處在復雜的背景環境下,且手可以到處隨便移動。當然了,環境差時有時候效果就不太好。
下面是3張實驗結果的截圖,手勢分隔圖1:
手勢分隔圖2:
手勢分隔圖3:
實驗主要部分代碼即注釋(附錄有工程code下載鏈接):
main.cpp:
#include <iostream> #include "opencv2/highgui/highgui.hpp" #include "opencv2/imgproc/imgproc.hpp" #include <opencv2/core/core.hpp> #include "copenni.cpp" #include <iostream> #define DEPTH_SCALE_FACTOR 255./4096. #define ROI_HAND_WIDTH 140 #define ROI_HAND_HEIGHT 140 #define MEDIAN_BLUR_K 5 int XRES = 640; int YRES = 480; #define DEPTH_SEGMENT_THRESH 5 using namespace cv; using namespace xn; using namespace std; int main (int argc, char **argv) { COpenNI openni; int hand_depth; Rect roi; roi.x = XRES/2; roi.y = YRES/2; roi.width = ROI_HAND_WIDTH; roi.height = ROI_HAND_HEIGHT; if(!openni.Initial()) return 1; namedWindow("color image", CV_WINDOW_AUTOSIZE); namedWindow("depth image", CV_WINDOW_AUTOSIZE); namedWindow("hand_segment", CV_WINDOW_AUTOSIZE);//顯示分割出來的手的區域 if(!openni.Start()) return 1; while(1) { if(!openni.UpdateData()) { return 1; } /*獲取並顯示色彩圖像*/ Mat color_image_src(openni.image_metadata.YRes(), openni.image_metadata.XRes(), CV_8UC3, (char *)openni.image_metadata.Data()); Mat color_image; cvtColor(color_image_src, color_image, CV_RGB2BGR); circle(color_image, Point(hand_point.X, hand_point.Y), 5, Scalar(255, 0, 0), 3, 8); imshow("color image", color_image); /*獲取並顯示深度圖像*/ Mat depth_image_src(openni.depth_metadata.YRes(), openni.depth_metadata.XRes(), CV_16UC1, (char *)openni.depth_metadata.Data());//因為kinect獲取到的深度圖像實際上是無符號的16位數據 Mat depth_image; depth_image_src.convertTo(depth_image, CV_8U, DEPTH_SCALE_FACTOR); imshow("depth image", depth_image); /*下面的代碼是提取手的輪廓部分*/ hand_depth = hand_point.Z * DEPTH_SCALE_FACTOR; roi.x = hand_point.X - ROI_HAND_WIDTH/2; roi.y = hand_point.Y - ROI_HAND_HEIGHT/2; if(roi.x <= 0) roi.x = 0; if(roi.x >= XRES) roi.x = XRES; if(roi.y <=0 ) roi.y = 0; if(roi.y >= YRES) roi.y = YRES; //取出手的mask部分 //不管原圖像時多少通道的,mask矩陣聲明為單通道就ok Mat hand_segment_mask(depth_image.size(), CV_8UC1, Scalar::all(0)); for(int i = roi.x; i < std::min(roi.x+roi.width, XRES); i++) for(int j = roi.y; j < std::min(roi.y+roi.height, YRES); j++) { hand_segment_mask.at<unsigned char>(j, i) = ((hand_depth-DEPTH_SEGMENT_THRESH) < depth_image.at<unsigned char>(j, i)) & ((hand_depth+DEPTH_SEGMENT_THRESH) > depth_image.at<unsigned char>(j,i)); } medianBlur(hand_segment_mask, hand_segment_mask, MEDIAN_BLUR_K); Mat hand_segment(color_image.size(), CV_8UC3); color_image.copyTo(hand_segment, hand_segment_mask); imshow("hand_segment", hand_segment); waitKey(20); } }
copenni,cpp:
#ifndef COPENNI_CLASS #define COPENNI_CLASS #include <XnCppWrapper.h> #include <iostream> #include <map> using namespace xn; using namespace std; static DepthGenerator depth_generator; static HandsGenerator hands_generator; static XnPoint3D hand_point; static std::map<XnUserID, vector<XnPoint3D>> hands_track_points; class COpenNI { public: ~COpenNI() { context.Release();//釋放空間 } bool Initial() { //初始化 status = context.Init(); if(CheckError("Context initial failed!")) { return false; } context.SetGlobalMirror(true);//設置鏡像 xmode.nXRes = 640; xmode.nYRes = 480; xmode.nFPS = 30; //產生顏色node status = image_generator.Create(context); if(CheckError("Create image generator error!")) { return false; } //設置顏色圖片輸出模式 status = image_generator.SetMapOutputMode(xmode); if(CheckError("SetMapOutputMdoe error!")) { return false; } //產生深度node status = depth_generator.Create(context); if(CheckError("Create depth generator error!")) { return false; } //設置深度圖片輸出模式 status = depth_generator.SetMapOutputMode(xmode); if(CheckError("SetMapOutputMdoe error!")) { return false; } //產生手勢node status = gesture_generator.Create(context); if(CheckError("Create gesture generator error!")) { return false; } /*添加手勢識別的種類*/ gesture_generator.AddGesture("Wave", NULL); gesture_generator.AddGesture("click", NULL); gesture_generator.AddGesture("RaiseHand", NULL); gesture_generator.AddGesture("MovingHand", NULL); //產生手部的node status = hands_generator.Create(context); if(CheckError("Create hand generaotr error!")) { return false; } //產生人體node status = user_generator.Create(context); if(CheckError("Create gesturen generator error!")) { return false; } //視角校正 status = depth_generator.GetAlternativeViewPointCap().SetViewPoint(image_generator); if(CheckError("Can't set the alternative view point on depth generator!")) { return false; } //設置與手勢有關的回調函數 XnCallbackHandle gesture_cb; gesture_generator.RegisterGestureCallbacks(CBGestureRecognized, CBGestureProgress, NULL, gesture_cb); //設置於手部有關的回調函數 XnCallbackHandle hands_cb; hands_generator.RegisterHandCallbacks(HandCreate, HandUpdate, HandDestroy, NULL, hands_cb); //設置有人進入視野的回調函數 XnCallbackHandle new_user_handle; user_generator.RegisterUserCallbacks(CBNewUser, NULL, NULL, new_user_handle); user_generator.GetSkeletonCap().SetSkeletonProfile(XN_SKEL_PROFILE_ALL);//設定使用所有關節(共15個) //設置骨骼校正完成的回調函數 XnCallbackHandle calibration_complete; user_generator.GetSkeletonCap().RegisterToCalibrationComplete(CBCalibrationComplete, NULL, calibration_complete); return true; } bool Start() { status = context.StartGeneratingAll(); if(CheckError("Start generating error!")) { return false; } return true; } bool UpdateData() { status = context.WaitNoneUpdateAll(); if(CheckError("Update date error!")) { return false; } //獲取數據 image_generator.GetMetaData(image_metadata); depth_generator.GetMetaData(depth_metadata); return true; } //得到色彩圖像的node ImageGenerator& getImageGenerator() { return image_generator; } //得到深度圖像的node DepthGenerator& getDepthGenerator() { return depth_generator; } //得到人體的node UserGenerator& getUserGenerator() { return user_generator; } //得到手勢姿勢node GestureGenerator& getGestureGenerator() { return gesture_generator; } public: DepthMetaData depth_metadata; ImageMetaData image_metadata; // static std::map<XnUserID, vector<XnPoint3D>> hands_track_points; private: //該函數返回真代表出現了錯誤,返回假代表正確 bool CheckError(const char* error) { if(status != XN_STATUS_OK ) { //QMessageBox::critical(NULL, error, xnGetStatusString(status)); cerr << error << ": " << xnGetStatusString( status ) << endl; return true; } return false; } //手勢某個動作已經完成檢測的回調函數 static void XN_CALLBACK_TYPE CBGestureRecognized(xn::GestureGenerator &generator, const XnChar *strGesture, const XnPoint3D *pIDPosition, const XnPoint3D *pEndPosition, void *pCookie) { // COpenNI *openni = (COpenNI*)pCookie; // openni->hands_generator.StartTracking(*pIDPosition); hands_generator.StartTracking(*pIDPosition); } //手勢開始檢測的回調函數 static void XN_CALLBACK_TYPE CBGestureProgress(xn::GestureGenerator &generator, const XnChar *strGesture, const XnPoint3D *pPosition, XnFloat fProgress, void *pCookie) { // COpenNI *openni = (COpenNI*)pCookie; // openni->hands_generator.StartTracking(*pPosition); hands_generator.StartTracking(*pPosition); } //手部開始建立的回調函數 static void XN_CALLBACK_TYPE HandCreate(HandsGenerator& rHands, XnUserID xUID, const XnPoint3D* pPosition, XnFloat fTime, void* pCookie) { // COpenNI *openni = (COpenNI*)pCookie; XnPoint3D project_pos; depth_generator.ConvertRealWorldToProjective(1, pPosition, &project_pos); // openni->hand_point = project_pos; //返回手部所在點的位置 hand_point = project_pos; pair<XnUserID, vector<XnPoint3D>> hand_track_point(xUID, vector<XnPoint3D>()); hand_track_point.second.push_back(project_pos); hands_track_points.insert(hand_track_point); } //手部開始更新的回調函數 static void XN_CALLBACK_TYPE HandUpdate(HandsGenerator& rHands, XnUserID xUID, const XnPoint3D* pPosition, XnFloat fTime, void* pCookie) { // COpenNI *openni = (COpenNI*)pCookie; XnPoint3D project_pos; depth_generator.ConvertRealWorldToProjective(1, pPosition, &project_pos); // openni->hand_point = project_pos; //返回手部所在點的位置 hand_point = project_pos; hands_track_points.find(xUID)->second.push_back(project_pos); } //銷毀手部的回調函數 static void XN_CALLBACK_TYPE HandDestroy(HandsGenerator& rHands, XnUserID xUID, XnFloat fTime, void* pCookie) { // COpenNI *openni = (COpenNI*)pCookie; //openni->hand_point.clear(); //返回手部所在點的位置 hands_track_points.erase(hands_track_points.find(xUID)); } //有人進入視野時的回調函數 static void XN_CALLBACK_TYPE CBNewUser(UserGenerator &generator, XnUserID user, void *p_cookie) { //得到skeleton的capability,並調用RequestCalibration函數設置對新檢測到的人進行骨骼校正 generator.GetSkeletonCap().RequestCalibration(user, true); } //完成骨骼校正的回調函數 static void XN_CALLBACK_TYPE CBCalibrationComplete(SkeletonCapability &skeleton, XnUserID user, XnCalibrationStatus calibration_error, void *p_cookie) { if(calibration_error == XN_CALIBRATION_STATUS_OK) { skeleton.StartTracking(user);//骨骼校正完成后就開始進行人體跟蹤了 } else { UserGenerator *p_user = (UserGenerator*)p_cookie; skeleton.RequestCalibration(user, true);//骨骼校正失敗時重新設置對人體骨骼繼續進行校正 } } private: XnStatus status; Context context; ImageGenerator image_generator; // DepthGenerator depth_generator; UserGenerator user_generator; GestureGenerator gesture_generator; // HandsGenerator hands_generator; // map<XnUserID, vector<XnPoint3D>> hands_track_points; XnMapOutputMode xmode; public: // static XnPoint3D hand_point; }; #endif
實驗總結:
本次實驗簡單的利用OpenNI的手部跟蹤功能提實時分隔出了人體手所在的部位。但是該分隔效果並不是特別好,以后可以改進手利用色彩信息來分隔出手的區域,或者計算出自適應手部位的區域。另外,本程序只是暫時分隔出一個手,以后可以擴展到分隔出多個手的部位.
參考資料:
Kinect+OpenNI學習筆記之8(Robert Walter手部提取代碼的分析)
http://dl.dropbox.com/u/5505209/FingertipTuio3d.zip
附錄:實驗工程code下載。