轉自:http://www.cnitblog.com/luckydmz/archive/2008/08/06/47719.aspx(背包九講,貌似分組背包出了點問題)
題目
有N種物品和一個容量為V的背包。第i種物品最多有n[i]件可用,每件費用是c[i],價值是w[i]。求解將哪些物品裝入背包可使這些物品的費用總和不超過背包容量,且價值總和最大。
基本算法
這題目和完全背包問題很類似。基本的方程只需將完全背包問題的方程略微一改即可,因為對於第i種物品有n[i]+1種策略:取0件,取1件……取 n[i]件。令f[i][v]表示前i種物品恰放入一個容量為v的背包的最大權值,則:f[i][v]=max{f[i-1][v-k*c[i]]+ k*w[i]|0<=k<=n[i]}。復雜度是O(V*∑n[i])。
轉化為01背包問題
另一種好想好寫的基本方法是轉化為01背包求解:把第i種物品換成n[i]件01背包中的物品,則得到了物品數為∑n[i]的01背包問題,直接求解,復雜度仍然是O(V*∑n[i])。
但是我們期望將它轉化為01背包問題之后能夠像完全背包一樣降低復雜度。仍然考慮二進制的思想,我們考慮把第i種物品換成若干件物品,使得原問題中第i種物品可取的每種策略——取0..n[i]件——均能等價於取若干件代換以后的物品。另外,取超過n[i]件的策略必不能出現。
方法是:將第i種物品分成若干件物品,其中每件物品有一個系數,這件物品的費用和價值均是原來的費用和價值乘以這個系數。使這些系數分別為 1,2,4,...,2^(k-1),n[i]-2^k+1,且k是滿足n[i]-2^k+1>0的最大整數。例如,如果n[i]為13,就將這種物品分成系數分別為1,2,4,6的四件物品。
分成的這幾件物品的系數和為n[i],表明不可能取多於n[i]件的第i種物品。另外這種方法也能保證對於0..n[i]間的每一個整數,均可以用若干個系數的和表示,這個證明可以分0..2^k-1和2^k..n[i]兩段來分別討論得出,並不難,希望你自己思考嘗試一下。
這樣就將第i種物品分成了O(log n[i])種物品,將原問題轉化為了復雜度為O(V*∑log n[i])的01背包問題,是很大的改進。
O(VN)的算法
多重背包問題同樣有O(VN)的算法。這個算法基於基本算法的狀態轉移方程,但應用單調隊列的方法使每個狀態的值可以以均攤O(1)的時間求解。由於用單調隊列優化的DP已超出了NOIP的范圍,故本文不再展開講解。我最初了解到這個方法是在樓天成的“男人八題”幻燈片上。
小結
這里我們看到了將一個算法的復雜度由O(V*∑n[i])改進到O(V*∑log n[i])的過程,還知道了存在應用超出NOIP范圍的知識的O(VN)算法。希望你特別注意“拆分物品”的思想和方法,自己證明一下它的正確性,並用盡量簡潔的程序來實現。