最近在做信號處理和模式識別的相關技術的研究,有感於介紹這方面的入門文章太少,希望記錄些有用的知識幫助需要從事相關工作的朋友少走些彎路。
Matlab大家應該都不陌生,園子里面應該有相當一部分人是學電信或自動控制出身的,我們從事着不同的行業,我們每天寫着不同的軟件。如果你在做信號處理或者通信相關的行業,相信如果有一天你需要做些原型設計,本文可以引導你快速的開始。
首先讓我們來看看matlab的產品定位:
The Language of Technical Computing
MATLAB® is a high-level language and interactive environment that enables
you to perform computationally intensive tasks faster than with traditional
programming languages such as C, C++, and Fortran.
過多的也沒必要解釋了,就是說一個字“快”,使用matlab可以使你想法更快的被實現出來,做設計的效率是其他編程語言說無法比擬的。據本人所知,數字信號處理里面的濾波器設計,頻譜分析,通信中的各種調制技術的設計,matlab可以說已經成了標准工具,就像windows上開發C#代碼,大部分人都使用visual studio一樣。
首先讓我們看看如何產生一些簡單有用的序列如何編寫:
---注:源代碼來自互聯網,僅供學習參考之用
function [x,n] = impseq(n0,n1,n2)
% Generates x(n) = delta(n-n0); n1 <= n,n0 <= n2
% ----------------------------------------------
% [x,n] = impseq(n0,n1,n2)
%
if ((n0 < n1) | (n0 > n2) | (n1 > n2))
error( ' arguments must satisfy n1 <= n0 <= n2 ')
end
n = [n1:n2];
%x = [zeros( 1,(n0-n1)), 1, zeros( 1,(n2-n0))];
x = [(n-n0) == 0];
單位階越:
function [x,n] = stepseq(n0,n1,n2)
再看看如何實現一些簡單算法和計算:
序列相加:
% implements y(n) = x1(n)+x2(n)
% -----------------------------
% [y,n] = sigadd(x1,n1,x2,n2)
% y = sum sequence over n, which includes n1 and n2
% x1 = first sequence over n1
% x2 = second sequence over n2 (n2 can be different from n1)
%
n = min(min(n1),min(n2)):max(max(n1),max(n2)); % duration of y(n)
y1 = zeros( 1,length(n)); y2 = y1; % initialization
y1(find((n>=min(n1))&(n<=max(n1))== 1))=x1; % x1 with duration of y
y2(find((n>=min(n2))&(n<=max(n2))== 1))=x2; % x2 with duration of y
y = y1+y2; % sequence addition
序列相乘:
function [y,n] = sigmult(x1,n1,x2,n2)
% -----------------------------
% [y,n] = sigmult(x1,n1,x2,n2)
% y = product sequence over n, which includes n1 and n2
% x1 = first sequence over n1
% x2 = second sequence over n2 (n2 can be different from n1)
%
n = min(min(n1),min(n2)):max(max(n1),max(n2)); % duration of y(n)
y1 = zeros( 1,length(n)); y2 = y1; %
y1(find((n>=min(n1))&(n<=max(n1))== 1))=x1; % x1 with duration of y
y2(find((n>=min(n2))&(n<=max(n2))== 1))=x2; % x2 with duration of y
y = y1 .* y2; % sequence multiplication
LMS算法實現:
% LMS Algorithm for Coefficient Adjustment
% ----------------------------------------
% [h,y] = lms(x,d,delta,N)
% h = estimated FIR filter
% y = output array y(n)
% x = input array x(n)
% d = desired array d(n), length must be same as x
% delta = step size
% N = length of the FIR filter
%
M = length(x); y = zeros( 1,M);
h = zeros( 1,N);
for n = N:M
x1 = x(n:- 1:n-N+ 1);
y = h * x1 ' ;
e = d(n) - y;
h = h + delta*e*x1;
end
DFT算法實現:
function [Xk] = dft(xn,N)
% -----------------------------------
% [Xk] = dft(xn,N)
% Xk = DFT coeff. array over 0 <= k <= N- 1
% xn = N-point finite-duration sequence
% N = Length of DFT
%
n = [ 0: 1:N- 1]; % row vector for n
k = [ 0: 1:N- 1]; % row vecor for k
WN = exp(-j* 2*pi/N); % Wn factor
nk = n ' *k; % creates a N by N matrix of nk values
WNnk = WN .^ nk; % DFT matrix
Xk = xn * WNnk; % row vector for DFT coefficients
簡單序列計算:
2. x(n) = n[u(n)-u(n-10)]+10*exp(-0.3(n-10))(u(n-10)-u(n-20)); 0<=n<=20
3. x(n) = cos(0.04*pi*n) + 0.2*w(n); 0<=n<=50, w(n): Gaussian (0,1)
4. x(n) = {...,5,4,3,2,1,5,4,3,2,1,...}; -10<=n<=9
結果如下:
幾個簡單的語句就可以完成相當復雜的計算,如果用C語言寫這中算法,相信設計效率的差距是不言而喻的,工欲善其事必先利其器,選對工具對於做正確的事情是很重要的。
關於學習資料和文檔:
推薦matlab的官方手冊和help文檔,對於每個工具箱的描述和基本功能的介紹都非常的明確,當然資料都是英文的,中文手冊我也一直沒有找到,如果有朋友有中文的手冊,請通知我。
關於書籍,我在書店隨便翻看了幾本,大部分都是手冊翻譯,而且都是就某個工具箱的翻譯,不是很全,書名倒是都很霸氣,如果那個朋友發現好的書籍也請您通知我,我會更新博文,讓更多的人受益。
總結:
本文資料源自本人的讀書筆記和互聯網,通過一些簡單的算法和源代碼說明了如何用matlab解決相關的問題,當然本文面向的是初學者,如果哪位對高級的topic感興趣,可以聯系我,希望對大家有所幫助。