LM算法详解
1. 高斯牛顿法 残差函数f(x)为非线性函数,对其一阶泰勒近似有: 这里的J是残差函数f的雅可比矩阵,带入损失函数的: 令其一阶导等于0,得: 这就是论文里常看到的normal equ ...
1. 高斯牛顿法 残差函数f(x)为非线性函数,对其一阶泰勒近似有: 这里的J是残差函数f的雅可比矩阵,带入损失函数的: 令其一阶导等于0,得: 这就是论文里常看到的normal equ ...
牛顿法 考虑如下无约束极小化问题: $$\min_{x} f(x)$$ 其中$x\in R^N$,并且假设$f(x)$为凸函数,二阶可微。当前点记为$x_k$,最优点记为$x^*$。 梯度下降 ...
1.优化问题: \(y=exp(ax^{2}+bx+c)+w\),由y和x,求解a,b,c 误差为:\(e_{i}=y_{i}-exp(ax_{i}^{2}+bx_{i}+c)\) 误差项对每一 ...
使用Ceres求解非线性优化问题,一共分为三个部分: 1、 第一部分:构建cost fuction,即代价函数,也就是寻优的目标式。这个部分需要使用仿函数(functor)这一技巧来实现,做法是定义一 ...