作者:桂。 时间:2017-04-14 06:22:26 链接:http://www.cnblogs.com/xingshansi/p/6685811.html 声明:欢迎被转载,不过记得注 ...
作者:桂。 时间:2017-04-14 06:22:26 链接:http://www.cnblogs.com/xingshansi/p/6685811.html 声明:欢迎被转载,不过记得注 ...
谱聚类(Spectral Clustering, SC)是一种基于图论的聚类方法——将带权无向图划分为两个或两个以上的最优子图,使子图内部尽量相似,而子图间距离尽量距离较远,以达到常见的 ...
本文将对谱聚类的知识进行一些总结。目的在于记录自己的学习经历,当作自己的笔记来写。写得不好的地方欢迎交流指正。谱聚类是一种非常流行的聚类算法,它不需要对簇的类型有很强的假设,可以聚类任何形 ...
简介 前面介绍的线性回归,SVM等模型都是基于数据有标签的监督学习方法,本文介绍的聚类方法是属于无标签的无监督学习方法。其他常见的无监督学习还有密度估计,异常检测等。 聚类就是对大量未知标注的数据 ...
作者:桂。 时间:2017-04-13 21:19:41 链接:http://www.cnblogs.com/xingshansi/p/6706400.html 声明:欢迎被转载,不过记得注 ...
谱聚类(Spectral Clustering, SC)在前面的博文中已经详述,是一种基于图论的聚类方法,简单形象且理论基础充分,在社交网络中广泛应用。本文将讲述进一步扩展其应用场景:首 ...
目录: 1、问题描述 2、问题转化 3、划分准则 4、总结 1、问题描述 谱聚类(Spectral Clustering, SC)是一种基于图论的聚类方法——将带权无向图划分为两个 ...
1. 邻接矩阵,度矩阵,拉普拉斯矩阵 给定一个无向图: 我们可以用邻接矩阵(Adjacent Matrix)表示它: 把这个邻接矩阵记为W,W中的1表示有连接,0表示没有连接,例如第一行 ...