函数在闭区间连续性质 闭区间连续定义 引理 a 从确界原理到单调有界 从单调有界到闭区间套 介值定理(零点存在性) 函数在某点连续,则在其某邻域上有界 函数在闭区间连续则有界 闭区间连续定义 若函数 \(f\) 在闭区间 \([a, b]\) 上有定义 ...
III. 连续性 经验表明,即使一个函数通常非常复杂且难以描述,在实际应用中的函数一般存在一些重要的定性性质。这些性质中的其中一个便是连续性。对于一个函数 f:X to Y ,连续性度量了值域 f X subseteq Y 中的微小变化是如何由定义域 X 中的微小变化引起的。为使得这有意义,集合 X 与 Y 必须赋予一些额外的结构以便给出 微小变化 的精确意义。显然度量空间是一个带有这种结构的合适 ...
2022-04-02 13:48 0 674 推荐指数:
函数在闭区间连续性质 闭区间连续定义 引理 a 从确界原理到单调有界 从单调有界到闭区间套 介值定理(零点存在性) 函数在某点连续,则在其某邻域上有界 函数在闭区间连续则有界 闭区间连续定义 若函数 \(f\) 在闭区间 \([a, b]\) 上有定义 ...
目录 1 连续函数的意义 1.1 连续函数类是实函数类的“杰出代表” 1.2 连续函数与实际科学问题的关系 1.3 概念延伸:稠密集确定连续函数 2 何谓“有理”分析:数学分析的知识结构 2.1 数学分析/高等数学 ...
关于e的极限 \(\lim\limits_{x\rightarrow 0}(1+x)^\frac{1}{x} = 1\), or: \(\lim\limits_{x\rightarrow \inft ...
数学分析学习笔记 xs,选了微积分,学的却是数分。 如果有写的不对的地方烦请指正,有些地方简写了。 自然数 皮亚诺公理: 0 是自然数 如果 \(n\) 为自然数,那么 \(S(n)\) 为自然数,\(S(n)\) 为 n 的后继,亦可以理解为 \(n ...
看到的一篇文章,数学分析的小清新解读,自己配了些图。欢迎原作者认领。 1】人生的痛苦在于追求错误的东西。所谓追求错误的东西,就是你在无限趋近于它的时候,才猛然发现,你和它是不连续的。 2】人和人就像数轴上的有理数点,彼此可以靠得很近很近,但你们之间始终存在隔阂 ...
(2018年中国数学奥林匹克希望联盟夏令营)已知$n\in\mathbb{N},n\geq 2$,设$0< ...
数学分析习题笔记 目录 数学分析习题笔记 第一章 T1: 第一章 T1: \(设\lbrace a_n\rbrace且a_n\rightarrow a \in \Bbb R,又设\lbrace ...
一致连续定理 一致连续定义 设函数 \(f(x)\) 在区间 \(I\) 上有定义,如果,\(\forall \epsilon > 0, \exist \delta >0\),使得对于在区间 \(I\) 上的任意两点 \(x_1, x_2\),当 \(|x_1 - x_2| < ...