原文:线性代数的本质

目录 序言 向量究竟是什么 线性组合 张成的空间与基 矩阵与线性变换的关系 行列式 逆矩阵 列空间 零空间 点积与对偶性 叉积 基变换 特征向量与特征值 抽象向量空间 通过直观的动画演示,理解线性代数的大部分核心概念 ,不是教你学习线性代数,而是帮助你更高效的学习。 序言 学校的课程对矩阵的要求比较高,但是对于潜在的几何直观知之甚少,但是现在我们有计算机,所以我认为更应该理解概念层面的东西。 在 ...

2021-11-26 23:08 0 101 推荐指数:

查看详情

线性代数本质(干货!)

原文链接:https://www.cnblogs.com/TenosDoIt/p/3214096.html 从大学开始接触矩阵论和线性代数,记了很多公式,但是总感觉徘徊在线性代数的门外没有进去,感觉并没有接触到它的核心概念,不巧看到了这篇博客,顿时醍醐灌顶,豁然开朗,记录与此: 比如说 ...

Mon Dec 25 19:02:00 CST 2017 2 20059
线性代数本质 - 笔记

本文主要内容为《线性代数本质》学习笔记,内容和图片主要参考 学习视频 ,感谢3Blue1Brown对于本视频翻译的辛苦付出。有的时候跟不上字幕,所有在这里有些内容参考了此篇博客。在这里我主要记录下自己觉得重要的内容以及一些相关的想法,希望能与大家多多交流~   本节内容对应视频的“00. 序言 ...

Sat Dec 30 23:12:00 CST 2017 0 1846
线性代数本质(5)——行列式

打破认知观的一节,之前学习行列式都是从逆序数开始学起,学习行列式的性质,做大量计算练习,这里直接告诉我们行列式的值代表面积/体积,建立了与矩阵、线性变换的联系,真的是一语惊醒梦中人! 5.0 总结 (1)行列式的意义 单位面积/单位体积缩放或者拉升的比例 线性变换对空间压缩或者拉升 ...

Thu May 14 17:26:00 CST 2020 0 1200
线性代数本质(1)——向量是什么

1.什么是向量 我们分别从数学专业、计算机专业、数学专业的眼中看着三种形式的向量表示: 向量的三种形式 线性代数想表达的就是“上述三种形式是相互等价的,可以相互转化”, 为数学分析、可视化提供了一种方式,以一种清晰明了的方式展示数据,更加形象、直观的了解数据的形式及本质 ...

Wed May 13 02:44:00 CST 2020 0 872
线性代数本质 - 系列合集】矩阵与线性变换

线性变换定义 直观地说,如果一个变换具有以下两条性质,我们就称它是线性的: 一是直线在变换后仍然保持为直线,不能有所弯曲(变换后对角线也必须是直线,也就是变换后的x轴和y轴保持平行且等分) 二是原点必须保持固定 总的来说,你应该吧线性变换看作是 保持网格平行且等距分布,并保持 ...

Sun Aug 15 08:27:00 CST 2021 0 102
线性代数本质(2)——线性空间、张成的空间&基

2.1 线性组合 定义:向量 及 的线性组合(Linear Combination)为 。 线性组合的各种情况: (线性的含义)固定一个向量,让另外一个向量自由伸缩,那么所产生向量的终点最终落在一条直线上 ; 让两个向量自由移动,这样加和后我们就能得到所有可能的向量 ...

Wed May 13 09:51:00 CST 2020 0 1074
线性代数本质(3)——矩阵与线性变换

Unfortunately, no one can be told what the Matrix is. You have to see it for yourself ---Morpheus 正如墨菲斯所说:没人能够清楚地告诉你矩阵是什么,你必须自己亲自看看。 3.1 线性 ...

Wed May 13 23:41:00 CST 2020 0 1183
线性代数本质(6)——逆矩阵、列空间及零空间

我们将线性方程组转化为一个向量方程组(注:在此主要考虑方程的个数与未知数的个数相等的情况): 对于该线性方程组 ,我们可以通过“高斯消元”等方式来计算,同样地可采用计算机方法来进行计算。而我们强调的是如何以“线性变换”的观点来看“逆矩阵、列空间、秩与零空间”。 6.1 逆变换 ...

Sun May 17 09:14:00 CST 2020 0 667
 
粤ICP备18138465号  © 2018-2025 CODEPRJ.COM