问题描述 先来看看问题描述。 当我们使用sigmoid funciton 作为激活函数时,随着神经网络hidden layer层数的增加,训练误差反而加大了,如上图所示。 下面以2层隐藏层神经网络为例,进行说明。 结点中的柱状图表示每个神经元参数的更新速率(梯度)大小,有图中 ...
目录 向量的内积 柯西 施瓦茨不等式 向量的一般化 张量 导数的定义 导数符号 导数的性质 分数函数的导数和 Sigmoid 函数的导数 最小值的条件 偏导数 多变量函数的最小值条件 链式法则 单变量函数的链式法则 多变量函数的链式法则 梯度下降法的基础 单变量函数的近似公式 多变量函数的近似公式 近似公式的向量表示 梯度下降法的含义与公式 梯度下降法的思路 近似公式和内积的关系 将梯度下降法推 ...
2021-09-03 10:09 0 124 推荐指数:
问题描述 先来看看问题描述。 当我们使用sigmoid funciton 作为激活函数时,随着神经网络hidden layer层数的增加,训练误差反而加大了,如上图所示。 下面以2层隐藏层神经网络为例,进行说明。 结点中的柱状图表示每个神经元参数的更新速率(梯度)大小,有图中 ...
一、现象介绍 靠近输出层的hidden layer 梯度大,参数更新快,所以很快就会收敛; 而靠近输入层的hidden layer 梯度小,参数更新慢,几乎就和初始状态一样,随机分布。 这种现象就是梯度弥散(vanishing gradient problem)。 而在另一种情况中,前面 ...
梯度求法:分别求各个变量的偏导数,偏导数分别乘三个轴的单位向量,然后各项相加。 梯度的本意是一个向量,表示某一函数在该点处的方向导数沿着该方向取得最大值,即函数在该点处沿着该方向(此梯度的方向)变化最快,变化率最大(为该梯度的模)。 ...
梯度算法之梯度上升和梯度下降 方向导数 当讨论函数沿任意方向的变化率时,也就引出了方向导数的定义,即:某一点在某一趋近方向上的导数值。 导数和偏导数的定义中,均是沿坐标轴正方向讨论函数的变化率。那么当讨论函数沿任意方向的变化率时,也就引出了方向导数的定义,即:某一点在某一趋近 ...
一、梯度gradient http://zh.wikipedia.org/wiki/%E6%A2%AF%E5%BA%A6 在标量场f中的一点处存在一个矢量G,该矢量方向为f在该点处变化率最大的方向,其模也等于这个最大变化率的数值,则矢量G称为标量场f的梯度。 在向量微积分中,标量场的梯度 ...
1.灰度 用黑色为基准色,不同的饱和度的黑色来显示图像。 每个灰度对象都具有从 0%(白色)到100%(黑色)的亮度值。 使用黑白或灰度扫描仪生成的图像通常以灰度显示。 与像素的关系:一般,像素值 ...
图像有像素组成,像素都是一个一个的数值,我们所能看到的图像的边界都是色彩变化很大的区域。所以当检测某个像素周围的值,值的差异很大,也就是梯度很大时,则可以判定该位置为边界。 1,sobel算子理论基础: x方向的梯度:右边-左边 (水平方向找的竖向的边界):(系数取决于卷积核)如果左右两列 ...
的变化率,即导数(梯度),那么对于图像来说,可不可以用微分来表示图像灰度的变化率呢,当然是可以的,前面 ...