1.一般形式 (1)一般形式 (2)一般形式推广 此推广形式又称卡尔松不等式,其表述是:在m×n矩阵中,各列元素之和的几何平均不小于各行元素的几何平均之和。 二维形式是卡尔松不等式n=2时的特殊情况。 (3)二维形式 2.向量形式 (1)向量形式 ...
1.一般形式 (1)一般形式 (2)一般形式推广 此推广形式又称卡尔松不等式,其表述是:在m×n矩阵中,各列元素之和的几何平均不小于各行元素的几何平均之和。 二维形式是卡尔松不等式n=2时的特殊情况。 (3)二维形式 2.向量形式 (1)向量形式 ...
$\bullet$ 二维形式的柯西不等式: $$(a^{2} + b^{2})(c^{2} + d^{2}) \geq (ac + bd)^{2}$$ 当且仅当 $ad = bc$ 时等号成立。 $\bullet$ 三维形式的柯西不等式: $$(a_{1}^{2} + a_ ...
定义 对于任意实数 \(a_i,b_i(i=1,2,\cdots,n)\),有 \[\sum\limits_{i=1}^n a_i^2 \sum\limits_{j=1}^n b_j^2 \ ...
二位柯西不等式\((ac+bd)^2≤(a^2+b^2)(c^2+d^2)\) 如图,两张图片中颜色相同的三角形全等,且均为直角三角形,不妨设蓝色三角形的直角边边长分别为a、b,黄色三角形的直角边边长分别为c、d。显然,两种图片中中心白色的部分分别为平行四边形和矩形,且两图形对应边长分别 ...
平时用最后一张图片已足够 进阶:高中数学-公式-柯西不等式 ...
柯西-施瓦茨不等式是一个在众多背景下都有应用的不等式,例如线性代数,数学分析,概率论,向量代数以及其他许多领域。它被认为是数学中最重要的不等式之一。此不等式最初于1821年被柯西提出,其积分形式在1859被布尼亚克夫斯基提出,而积分形式的现代证明则由施瓦兹于1888年给出。 ...
均值不等式 条件:\(a_i\ge0\)。 平方平均数:\(Q_n=\sqrt{\dfrac{\sum_{i=1}^{n}a_i^2}{n}}\) 算数平均数:\(A_n=\dfrac{\sum_{i=1}^{n}a_i}{n}\) 几何平均数:\(G_n=\sqrt[n]{a_1a_2 ...
(1)定义 设f是定义域为实数的函数,如果对所有的实数x,f(x)的二阶导数都大于0,那么f是凸函数。 Jensen不等式定义如下: 如果f是凸函数,X是随机变量,那么: 。当且仅当X是常量时,该式取等号。其中,E(X)表示X的数学期望。 注:Jensen不等式应用于凹函数时,不等号方向 ...