我在 《人造卫星轨道 和 天体轨道 原理》 https://www.cnblogs.com/KSongKing/p/11867972.html 中 提出了 一体问题 在 直角坐标系 下 的 微分方程组 : d²x / dt² = - G M / (x² + y ...
伯努利方程: p frac rho nu rho g h cos t p 表示此处流体的压强 rho 表示此处流体的密度 nu 表示此处流体的速度 h 表表示此处距基准面的高度 g 为重力加速度 ...
2020-03-08 13:17 0 1047 推荐指数:
我在 《人造卫星轨道 和 天体轨道 原理》 https://www.cnblogs.com/KSongKing/p/11867972.html 中 提出了 一体问题 在 直角坐标系 下 的 微分方程组 : d²x / dt² = - G M / (x² + y ...
摘自Wikipedia——刚性方程。 1. 定义 在数学领域中,刚性方程(stiffness equation)是指一个微分方程,其数值分析的解只有在时间间隔很小时才会稳定,只要时间间隔略大,其解就会不稳定。目前很难去精确地去定义哪些微分方程是刚性方程,然而粗略而言,若此方程式中包含使其快速 ...
在这里呀 题目: 已知一个n元高次方程: 其中:x ...
,Riccati方程不能用初等积分方法求出它的通解,如果知道它的一个特解,就可以用初等积分方法求出通解 ...
思想:当前状态的价值和下一步的价值和当前的奖励有关。价值函数分解为当前奖励和下一步价值函数两部分,类似于递归的思想 例如在上面这个图中。vπ(s)是状态s的价值函数。π(a|s)是状态s ...
教学目的:介绍最简单也是非常这样的曲面——平面,为下学期学习重积分、线面积分打下基础. 教学重点:1.平面的方程 2.两平面的夹角 教学难点:平面的几种表示及其应用 教学内容: 一.平面的点法式方程 1.平面的法线向量定义:垂直于一平面的非零向量叫做平面的法线向量 ...
直线方程 点斜式:\(y-y_1=k(x-x_1)\)(其中\(l\)过定点\(P_1(x_1,y_1)\),斜率为\(k\)); 缺陷:不能表示斜率不存在的直线; 斜截式:\(y=kx+b\)(\(k\)是斜率,\(b\)是\(y\)截距); 缺陷 ...
已知顶点M(m,n,p)和准线C的方程: 计算其锥面方程的方法如下: 设点P(x0,y0,z0)在准线C上,则可得过MP的直线方程: 将直线方程与准线方程联立,得: 消去x0,y0,z0即可得到锥面方程。 示例: 已知顶点为原点,准线方程为: 求其锥面方程 ...