xavier_initializer( uniform=True, seed=None, dtype=tf.float32 ) 该函数返回一个用于初始化权重的初始化程序 “Xavier” 。这个初始化器是用来保持每一层的梯度大小 ...
Returns an initializer that generates tensors without scaling variance. When initializing a deep network, it is in principle advantageous to keep the scale of the input variance constant, so it does ...
2018-07-27 14:58 0 3156 推荐指数:
xavier_initializer( uniform=True, seed=None, dtype=tf.float32 ) 该函数返回一个用于初始化权重的初始化程序 “Xavier” 。这个初始化器是用来保持每一层的梯度大小 ...
https://blog.csdn.net/yinruiyang94/article/details/78354257xavier_initializer( uniform=True, seed=None, dtype=tf.float32)12345该函数返回一个用于初始化权重的初始化程序 ...
/init_ops.py 1、tf.constant_initializer() 也可以简写为tf. ...
tf.GraphKeys.REGULARIZATION_LOSSES。 机器学习的 L1 和 L2 规范 其他规则化函数 Regularizers t ...
就是我们熟知的L2正则化,是权重的平方再加和 L1正则化是权重的绝对值加和 转载:https://www.cnblogs.com/guqiangjs/p/7807852.html ...
tf.contrib.layers.fully_connected 添加完全连接的图层。 tf.contrib.layers.fully_connected( inputs, num_outputs, activation_fn=tf ...
这一节,介绍TensorFlow中的一个封装好的高级库,里面有前面讲过的很多函数的高级封装,使用这个高级库来开发程序将会提高效率。 我们改写第十三节的程序,卷积函数我们使用tf.contrib.layers.conv2d(),池化函数使用tf.contrib.layers ...
在TensorFlow中封装好了一个高级库,tf.contrib.layers库封装了很多的函数,使用这个高级库来开发将会提高效率,卷积函数使用tf.contrib.layers.conv2d,池化函数使用tf.contrib.layers ...