在学习的过程中遇见了一个问题,就是当使用backward()反向传播时传入参数的问题: 这里的backward()中为什么需要传入参数Variable(t.ones(1, 10))呢?没有传入就会报错: 这个错误的意思就是梯度只能为标量(即一个数)输出隐式地创建 ...
首先看这个自动求导的参数: grad variables:形状与variable一致,对于y.backward ,grad variables相当于链式法则dzdx dzdy amp x D dydx dz dx dz dy dy dx中的dz over dy dz dy。grad variables也可以是tensor或序列。 retain graph:反向传播需要缓存一些中间结果,反向传播之后 ...
2018-01-23 17:01 0 2898 推荐指数:
在学习的过程中遇见了一个问题,就是当使用backward()反向传播时传入参数的问题: 这里的backward()中为什么需要传入参数Variable(t.ones(1, 10))呢?没有传入就会报错: 这个错误的意思就是梯度只能为标量(即一个数)输出隐式地创建 ...
平常都是无脑使用backward,每次看到别人的代码里使用诸如autograd.grad这种方法的时候就有点抵触,今天花了点时间了解了一下原理,写下笔记以供以后参考。以下笔记基于Pytorch1.0 Tensor Pytorch中所有的计算其实都可以回归到Tensor上,所以有必要重新认识 ...
转自:https://sherlockliao.github.io/2017/07/10/backward/ backward只能被应用在一个标量上,也就是一个一维tensor,或者传入跟变量相关的梯度。 特别注意Variable里面默认的参数requires_grad=False ...
这个函数的作用是反向传播计算梯度的。 这个只有标量才能直接使用 backward(),如果使用自定义的函数,得到的不是标量,则backward()时需要传入 grad_variable 参数。 torch.tensor是autograd包的基础类,如果你设置tensor ...
参考自《Pytorch autograd,backward详解》: 1 Tensor Pytorch中所有的计算其实都可以回归到Tensor上,所以有必要重新认识一下Tensor。 如果我们需要计算某个Tensor的导数,那么我们需要设置其.requires_grad属性为True。为方便 ...
Pytorch在梯度方面提供的功能,大多是为神经网络而设计的。而官方文档给出的定义和解释比较抽象。以下将结合实例,总结一下自己对Pytorch中梯度计算backward函数的理解。 1. 简单的神经网络构建 首先我们看一个非常简单的神经网络。 假设x1,x2是神经网络的中间层,y ...
这篇文章讲得比较清晰,特地备份一下: pytorch中backward函数的gradient参数作用 问题引入 在深度学习中,经常需要对函数求梯度(gradient)。PyTorch提供的autograd包能够根据输入和前向传播过程自动构建计算图,并执行反向传播。 PyTorch中 ...
错误信息 类型错误, 计算loss值的函数传入的参数类型不统一。 解决方法 查看上文loss计算代码部分的参数类型,如loss=f.mse_loss(out,label),检查out和lab ...