1.检查是否有合适的GPU, 若有安装Cuda与CuDNN (1)检查电脑是否有合适的GPU 在桌面上右击如果能找到NVIDA控制面板,则说明该电脑有GPU。控制面板如下,并通过查看系统信息获取支 ...
1.检查是否有合适的GPU, 若有安装Cuda与CuDNN (1)检查电脑是否有合适的GPU 在桌面上右击如果能找到NVIDA控制面板,则说明该电脑有GPU。控制面板如下,并通过查看系统信息获取支 ...
1.model.train()与model.eval()的用法 看别人的面经时,浏览到一题,问的就是这个。自己刚接触pytorch时套用别人的框架,会在训练开始之前写上model.trian(),在 ...
1.Conv3d Parameters: in_channels(int) – 输入信号的通道 out_channels(int) – 卷积产生的通道 kernel_s ...
1.nn.Module类理解 pytorch里面一切自定义操作基本上都是继承nn.Module类来实现的 方法预览: 我们在定义自已的网络的时候,需要继承nn.Module类,并重 ...
1.学习率 (learning rate) 学习率 (learning rate),控制模型的学习进度 : 学习率(Learning Rate,常用η表示。)是一个超参数,考虑到损失梯度,它控制着 ...
1.LSTM+CRF概述 对于命名实体识别来讲,目前比较流行的方法是基于神经网络,例如,论文[1]提出了基于BiLSTM-CRF的命名实体识别模型,该模型采用word embedding和chara ...
1.word Embedding的概念理解 首先,我们先理解一下什么是Embedding。Word Embedding翻译过来的意思就是词嵌入,通俗来讲就是将文字转换为一串数字。因为数字是计算机更容 ...
batch_size、epoch、iteration是深度学习中常见的几个超参数: (1)batch_size:每批数据量的大小。DL通常用SGD的优化算法进行训练,也就是一次(1 个iterati ...
1.LSTM模型参数说明 class torch.nn.LSTM(*args, **kwargs) 参数列表 input_size:x的特征维度 hidden_size:隐藏层的特征维 ...
1.优化器算法简述 首先来看一下梯度下降最常见的三种变形 BGD,SGD,MBGD,这三种形式的区别就是取决于我们用多少数据来计算目标函数的梯度,这样的话自然就涉及到一个 trade-off,即参数 ...