原文:正负样本比率失衡SMOTE

正负样本比率失衡SMOTE 目录 正负样本比率失衡SMOTE 背景 公式 python实现 代码的使用方法 背景 这几天测试天池的优惠券预测数据在dnn上面会不会比集成树有较好的效果,但是正负样本差距太大,而处理这种情况的一般有欠抽样和过抽样,这里主要讲过抽样,过抽样有一种简单的方法叫随机过抽样,但是随机过抽样只是随机的复制,很容易过拟合,所以SMOTE比较好,SMOTE还有一些改进版本,更好用, ...

2017-12-21 17:50 0 1667 推荐指数:

查看详情

正负样本

样本是指属于某目标类别的样本,负样本是指不属于目标类别的样本。 以分类问题为例,正样本即为我们想要分类出来的样本类型。比如在汽车分类场景下,我们需要确定一张照片是否为汽车,则在训练过程中,汽车图片就为正样本,非汽车图片为负样本,训练模型后得到一个分类模型。测试 ...

Thu Mar 10 04:33:00 CST 2022 1 1171
样本失衡会对SVM的影响

假设正类样本远多于负类 1、线性可分的情况 假设真实数据集如下: 由于负类样本量太少,可能会出现下面这种情况 使得分隔超平面偏向负类。严格意义上,这种样本不平衡不是因为样本数量的问题,而是因为边界点发生了变化 2、线性不可分的情况 源数据以及理想的超平面情况 ...

Sat Jul 11 19:12:00 CST 2015 0 1901
样本类别比例严重失衡

在机器学习中我们经常会遇到一个比较让人头疼的问题,就是样本类别比例失衡,在我第一次参加的Kaggle的比赛中,是一个而分类问题,给定的训练集样本正负样本的比例大致达到惊人的1:1600。 通过网上搜集资料,其实针对这样的情况解决办法可以分为三种: 第一种:    将正向样本进行重复混入 ...

Thu Apr 19 07:01:00 CST 2018 0 1257
机器学习中的正负样本

对于机器学习中的正负样本问题,之前思考过一次,但是后来又有些迷惑,又看了些网上的总结,记录在这里。 我们经常涉及到的任务有检测以及分类。 针对与分类问题,正样本则是我们想要正确分类出的类别所对应的样本,例如,我们要对一张图片进行分类,以确定其是否属于汽车,那么在训练的时候,汽车的图片则为正样本 ...

Fri Nov 24 22:57:00 CST 2017 0 6570
人脸检測流程及正负样本下载

人脸检測做训练当然能够用OpenCV训练好的xml。可是岂止于此。我们也要动手做! ~ 首先是样本的选取。 样本的选取非常重要。找了非常久才发现几个靠谱的。 人脸样本:http://www.vision.caltech.edu/Image_Datasets ...

Thu May 18 20:49:00 CST 2017 0 1466
机器学习中的正负样本

在机器学习中经常会遇到正负样本的问题,花了一点时间查找资料,基本上弄明白了一点到底是怎么回事,记录在这里以便以后查看,也希望能够帮助到有疑惑的人,当然也希望理解的比较透彻的人看到之后对于理解的不对的地方能够予以指点。 首先我将这个问题分为分类问题与检测问题两个方面进行理解。在分类问题中,这个问题 ...

Wed Jan 04 18:55:00 CST 2017 0 25726
目标检测中的正负样本分配

Anchor free的正负样本分配(yolox为例) step1: 初步筛选 step2: 精细化筛选 Anchor base(yolov5为例) ...

Wed Nov 03 03:41:00 CST 2021 0 201
SMOTE算法解决样本不平衡

首先,看下Smote算法之前,我们先看下当正负样本不均衡的时候,我们通常用的方法: 抽样 常规的包含过抽样、欠抽样、组合抽样 过抽样:将样本较少的一类sample补齐 欠抽样:将样本较多的一类sample压缩 组合抽样:约定一个量级N,同时进行过抽样和欠抽样,使得正负样本量和等于 ...

Fri Mar 27 03:50:00 CST 2020 0 2257
 
粤ICP备18138465号  © 2018-2025 CODEPRJ.COM