感知野的概念尤为重要,对于理解和诊断CNN网络是否工作,其中一个神经元的感知野之外的图像并不会对神经元的值产生影响,所以去确保这个神经元覆盖的所有相关的图像区域是十分重要的;需要对输出图像的单个像素进 ...
Deep Neural Networks are Easily Fooled: High Confidence Predictions for Unrecognizable Images Deep Neural Networks are Easily Fooled: High Confidence Predictions for Unrecognizable Images 是 年的cvpr的文章。 ...
2017-10-23 15:25 0 1257 推荐指数:
感知野的概念尤为重要,对于理解和诊断CNN网络是否工作,其中一个神经元的感知野之外的图像并不会对神经元的值产生影响,所以去确保这个神经元覆盖的所有相关的图像区域是十分重要的;需要对输出图像的单个像素进 ...
这个论文应该算是把深度学习应用到图片识别(ILSVRC,ImageNet large-scale Visual Recognition Challenge)上的具有重大意义的一篇文章。因为在之前,人们一直质疑深度学习的强大有能力。 大家看看它的引用数目就知道它很厉害了,,9000多的引用 ...
这篇论文提出了AlexNet,奠定了深度学习在CV领域中的地位。 1. ReLu激活函数 2. Dropout 3. 数据增强 网络的架构如图所示 包含八个学习层:五个卷积神经网络和三个全连接网络,并且使用了最大池化。 RELU非线性层 传统的神经网络的输出包括$tanh ...
论文地址:https://arxiv.org/abs/1707.06168 代码地址:https://github.com/yihui-he/channel-pruning 采用方法 这篇文章主要讲诉了采用裁剪信道(channel pruning)的方法实现深度网络的加速 ...
通过激活聚类的方法检测深度神经网络的后门攻击 王妮婷 王静雯 郑爽 2020-04-08 论文的基本信息: 《Detecting Backdoor Attacks on Deep Neural Networks by Activation Clustering ...
自监督学习 自监督学习(Self-Supervised Learning)是一种介于无监督和监督学习之间的一种新范式,旨在减少深度网络对大量注释数据的需求。大量的人工标注的样本是费时耗力的。 它通 ...