CNN学习笔记:梯度下降法 梯度下降法 梯度下降法用于找到使损失函数尽可能小的w和b,如下图所示,J(w,b)损失函数是一个在水平轴w和b上面的曲面,曲面的高度表示了损失函数在某一个点的值 ...
一 梯度检测: 对于函数而言通常有两种计算梯度的方式: .数值梯度 numberical gradient .解析梯度 analytic gradient 数值梯度计算通常为: 更为常见的是: h是一个很小的数,在实际当中通常为 e 假设数值梯度为 a 解析梯度为 n,则数值梯度和解析梯度的误差relative error: relative error gt e 通常情况梯度是错误的 e lt ...
2016-06-02 12:45 0 1651 推荐指数:
CNN学习笔记:梯度下降法 梯度下降法 梯度下降法用于找到使损失函数尽可能小的w和b,如下图所示,J(w,b)损失函数是一个在水平轴w和b上面的曲面,曲面的高度表示了损失函数在某一个点的值 ...
对于CNN输入的数据,常见的有三种处理方式: 1.Mean subtraction. 将数据的每一维特征都减去平均值。在numpy 中 X -= np.mean(X, axis = 0) 2.Normalization 归一化数据,使数据在相同尺度。 在numpy ...
梯度下降法先随机给出参数的一组值,然后更新参数,使每次更新后的结构都能够让损失函数变小,最终达到最小即可。在梯度下降法中,目标函数其实可以看做是参数的函数,因为给出了样本输入和输出值后,目标函数就只剩下参数部分了,这时可以把参数看做是自变量,则目标函数变成参数的函数了。梯度下降每次都是更新每个参数 ...
一、梯度gradient http://zh.wikipedia.org/wiki/%E6%A2%AF%E5%BA%A6 在标量场f中的一点处存在一个矢量G,该矢量方向为f在该点处变化率最大的方向,其模也等于这个最大变化率的数值,则矢量G称为标量场f的梯度。 在向量微积分中,标量场的梯度 ...
卷积神经网络CNN-学习1 十年磨一剑,霜刃未曾试。 简介:卷积神经网络CNN学习。 CNN中文视频学习链接:卷积神经网络工作原理视频-中文版 CNN英语原文学习链接:卷积神经网络工作原理视频-英文版 一、定义 卷积神经网络 ...
人脸表情识别 一、数据集说明 使用的数据集是FER2013 kaggle FER2013 https://www.kaggle.com/c/challenges-in-representati ...
转载请注明出处,楼燚(yì)航的blog,http://www.cnblogs.com/louyihang-loves-baiyan/ 这几种方法呢都是在求最优解中经常出现的方法,主要是应用迭代的思想来逼近。在梯度下降算法中,都是围绕以下这个式子展开: \[\frac {\partial ...
1. 梯度 在微积分里面,对多元函数的参数求∂偏导数,把求得的各个参数的偏导数以向量的形式写出来,就是梯度。比如函数f(x,y), 分别对x,y求偏导数,求得的梯度向量就是(∂f/∂x, ∂f/∂y)T,简称grad f(x,y)或者▽f(x,y)。对于在点(x0,y0)的具体梯度向量 ...