LLE 局部线性嵌入,Locally Linear Embedding(LLE)是另一个功能强大的非线性降维(nonlinear dimensional reduction,NLDR)技术。它是一个流形学习技术,并不基于投影。简单地说,LLE工作的方式是:首先衡量每个训练实例与它最近的邻居们 ...
机器学习系统设计 第 章 降维 学习笔记 针对书上的内容和网络上的资料记录下来的笔记,大家一起学习交流。 一 为什么需要降维 一 多余的特征会影响或误导学习器 二 更多特征意味着更多参数需要调整,过拟合风险也越大 三 数据的维度可能只是虚高,真实维度可能比较小 四 维度越少意味着训练越快,更多东西可以尝试,能够得到更好的结果 五 如果我们想要可视化数据,就必须限制在两个或三个维度上 因此,我们需 ...
2016-04-10 11:26 0 2601 推荐指数:
LLE 局部线性嵌入,Locally Linear Embedding(LLE)是另一个功能强大的非线性降维(nonlinear dimensional reduction,NLDR)技术。它是一个流形学习技术,并不基于投影。简单地说,LLE工作的方式是:首先衡量每个训练实例与它最近的邻居们 ...
概念 在机器学习中经常会碰到一些高维的数据集,而在高维数据情形下会出现数据样本稀疏,距离计算等困难,这类问题是所有机器学习方法共同面临的严重问题,称之为“ 维度灾难 ”。另外在高维特征中容易出现特征之间的线性相关,这也就意味着有的特征是冗余存在的。基于这些问题,降维思想就出现了。 降维方法 ...
转载请声明出处:http://blog.csdn.net/zhongkelee/article/details/44064401 一、PCA简介 1. 相关背景 上完陈恩红老师的《机 ...
之前对PCA的原理挺熟悉,但一直没有真正使用过。最近在做降维,实际用到了PCA方法对样本特征进行降维,但在实践过程中遇到了降维后样本维数大小限制问题。 MATLAB自带PCA函数:[coeff, score, latent, tsquared] = pca(X) 其中,X是n*p的,n ...
降维 在很多机器学习问题中,训练集中的每条数据经常伴随着上千、甚至上万个特征。要处理这所有的特征的话,不仅会让训练非常缓慢,还会极大增加搜寻良好解决方案的困难。这个问题就是我们常说的维度灾难。 不过值得庆幸的是,在实际问题中,经常可以极大地减少特征的数目,将棘手的问题转变为容易处理的问题 ...
数据集中含有太多特征时,需要简化数据。降维不是删除部分特征,而是将高维数据集映射到低维数据集,映射后的数据集更简洁,方便找出对结果贡献最大的部分特征。 简化数据的原因: 1、使得数据集更易使用 2、降低很多算法的计算开销 3、去除噪声 4、使得结果易懂 PCA:principal ...
PCA要做的事降噪和去冗余,其本质就是对角化协方差矩阵。 一.预备知识 1.1 协方差分析 对于一般的分布,直接代入E(X)之类的就可以计算出来了,但真给你一个具体数值的分布,要 ...
MATLAB实例:PCA降维 作者:凯鲁嘎吉 - 博客园 http://www.cnblogs.com/kailugaji/ 1. iris数据 5.1,3.5,1.4,0.2,1 4.9,3.0,1.4,0.2,1 4.7,3.2,1.3,0.2,1 ...