Pytorch中pad函数toch.nn.functional.pad()的用法


padding操作是给图像外围加像素点。

为了实际说明操作过程,这里我们使用一张实际的图片来做一下处理。

这张图片是大小是(256,256),使用pad来给它加上一个黑色的边框。具体代码如下:

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
import torch.nn,functional as F
import torch
from PIL import Image
im = Image. open ( "heibai.jpg" , 'r' )
 
X = torch.Tensor(np.asarray(im))
print ( "shape:" ,X.shape)
dim = ( 10 , 10 , 10 , 10 )
X = F.pad(X,dim, "constant" ,value = 0 )
 
padX = X.data.numpy()
padim = Image.fromarray(padX)
padim = padim.convert( "RGB" ) #这里必须转为RGB不然会
 
padim.save( "padded.jpg" , "jpeg" )
padim.show()
print ( "shape:" ,padX.shape)

输出:

1
2
shape: torch.Size([ 256 , 256 ])
shape: ( 276 , 276 )

可以看出给原图四个方向给加上10维度的0,维度变为256+10+10得到的图像如下:

再举几个简单例子:

1
2
3
4
5
6
7
8
9
10
11
12
x = np.asarray([[[ 1 , 2 ],[ 1 , 2 ]]])
X = torch.Tensor(x)
print (X.shape)
pad_dims = (
           2 , 2 ,
           2 , 2 ,
           1 , 1 ,
 
         )
X = F.pad(X,pad_dims, "constant" )
print (X.shape)
print (X)

输出:

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
torch.Size([ 1 , 2 , 2 ])
torch.Size([ 3 , 6 , 6 ])
tensor([[[ 0. , 0. , 0. , 0. , 0. , 0. ],
      [ 0. , 0. , 0. , 0. , 0. , 0. ],
      [ 0. , 0. , 0. , 0. , 0. , 0. ],
      [ 0. , 0. , 0. , 0. , 0. , 0. ],
      [ 0. , 0. , 0. , 0. , 0. , 0. ],
      [ 0. , 0. , 0. , 0. , 0. , 0. ]],
 
     [[ 0. , 0. , 0. , 0. , 0. , 0. ],
      [ 0. , 0. , 0. , 0. , 0. , 0. ],
      [ 0. , 0. , 1. , 2. , 0. , 0. ],
      [ 0. , 0. , 1. , 2. , 0. , 0. ],
      [ 0. , 0. , 0. , 0. , 0. , 0. ],
      [ 0. , 0. , 0. , 0. , 0. , 0. ]],
 
     [[ 0. , 0. , 0. , 0. , 0. , 0. ],
      [ 0. , 0. , 0. , 0. , 0. , 0. ],
      [ 0. , 0. , 0. , 0. , 0. , 0. ],
      [ 0. , 0. , 0. , 0. , 0. , 0. ],
      [ 0. , 0. , 0. , 0. , 0. , 0. ],
      [ 0. , 0. , 0. , 0. , 0. , 0. ]]])

可以知若pad_dims为(2,2,2,2,1,1)则原维度变化是2+2+2=6,1+1+1=3.也就是第一个(2,2) pad的是最后一个维度,第二个(2,2) pad是倒数第二个维度,第三个(1,1) pad是第一个维度。

再举一个四维度的,但是只pad三个维度:

1
2
3
4
5
6
7
8
9
10
11
12
x = np.asarray([[[[ 1 , 2 ],[ 1 , 2 ]]]])
X = torch.Tensor(x) #(1,2,2)
print (X.shape)
pad_dims = (
           2 , 2 ,
           2 , 2 ,
           1 , 1 ,
          )
X = F.pad(X,pad_dims, "constant" ) #(1,1,12,12)
print (X.shape)
print (X)

输出:

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
torch.Size([ 1 , 1 , 2 , 2 ])
torch.Size([ 1 , 3 , 6 , 6 ])
tensor([[[[ 0. , 0. , 0. , 0. , 0. , 0. ],
      [ 0. , 0. , 0. , 0. , 0. , 0. ],
      [ 0. , 0. , 0. , 0. , 0. , 0. ],
      [ 0. , 0. , 0. , 0. , 0. , 0. ],
      [ 0. , 0. , 0. , 0. , 0. , 0. ],
      [ 0. , 0. , 0. , 0. , 0. , 0. ]],
 
      [[ 0. , 0. , 0. , 0. , 0. , 0. ],
      [ 0. , 0. , 0. , 0. , 0. , 0. ],
      [ 0. , 0. , 1. , 2. , 0. , 0. ],
      [ 0. , 0. , 1. , 2. , 0. , 0. ],
      [ 0. , 0. , 0. , 0. , 0. , 0. ],
      [ 0. , 0. , 0. , 0. , 0. , 0. ]],
 
      [[ 0. , 0. , 0. , 0. , 0. , 0. ],
      [ 0. , 0. , 0. , 0. , 0. , 0. ],
      [ 0. , 0. , 0. , 0. , 0. , 0. ],
      [ 0. , 0. , 0. , 0. , 0. , 0. ],
      [ 0. , 0. , 0. , 0. , 0. , 0. ],
      [ 0. , 0. , 0. , 0. , 0. , 0. ]]]])

再举一个四维度的,pad四个维度:

1
2
3
4
5
6
7
8
9
10
11
12
13
x = np.asarray([[[[ 1 , 2 ],[ 1 , 2 ]]]])
X = torch.Tensor(x) #(1,2,2)
print (X.shape)
pad_dims = (
           2 , 2 ,
           2 , 2 ,
           1 , 1 ,
           2 , 2
         )
X = F.pad(X,pad_dims, "constant" ) #(1,1,12,12)
print (X.shape)
print (X)

输出:

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
torch.Size([ 1 , 1 , 2 , 2 ])
torch.Size([ 5 , 3 , 6 , 6 ])
tensor([[[[ 0. , 0. , 0. , 0. , 0. , 0. ],
      [ 0. , 0. , 0. , 0. , 0. , 0. ],
      [ 0. , 0. , 0. , 0. , 0. , 0. ],
      [ 0. , 0. , 0. , 0. , 0. , 0. ],
      [ 0. , 0. , 0. , 0. , 0. , 0. ],
      [ 0. , 0. , 0. , 0. , 0. , 0. ]],
 
      [[ 0. , 0. , 0. , 0. , 0. , 0. ],
      [ 0. , 0. , 0. , 0. , 0. , 0. ],
      [ 0. , 0. , 0. , 0. , 0. , 0. ],
      [ 0. , 0. , 0. , 0. , 0. , 0. ],
      [ 0. , 0. , 0. , 0. , 0. , 0. ],
      [ 0. , 0. , 0. , 0. , 0. , 0. ]],
 
      [[ 0. , 0. , 0. , 0. , 0. , 0. ],
      [ 0. , 0. , 0. , 0. , 0. , 0. ],
      [ 0. , 0. , 0. , 0. , 0. , 0. ],
      [ 0. , 0. , 0. , 0. , 0. , 0. ],
      [ 0. , 0. , 0. , 0. , 0. , 0. ],
      [ 0. , 0. , 0. , 0. , 0. , 0. ]]],


免责声明!

本站转载的文章为个人学习借鉴使用,本站对版权不负任何法律责任。如果侵犯了您的隐私权益,请联系本站邮箱yoyou2525@163.com删除。



 
粤ICP备18138465号  © 2018-2025 CODEPRJ.COM