Pytorch中pad函數toch.nn.functional.pad()的用法


padding操作是給圖像外圍加像素點。

為了實際說明操作過程,這里我們使用一張實際的圖片來做一下處理。

這張圖片是大小是(256,256),使用pad來給它加上一個黑色的邊框。具體代碼如下:

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
import torch.nn,functional as F
import torch
from PIL import Image
im = Image. open ( "heibai.jpg" , 'r' )
 
X = torch.Tensor(np.asarray(im))
print ( "shape:" ,X.shape)
dim = ( 10 , 10 , 10 , 10 )
X = F.pad(X,dim, "constant" ,value = 0 )
 
padX = X.data.numpy()
padim = Image.fromarray(padX)
padim = padim.convert( "RGB" ) #這里必須轉為RGB不然會
 
padim.save( "padded.jpg" , "jpeg" )
padim.show()
print ( "shape:" ,padX.shape)

輸出:

1
2
shape: torch.Size([ 256 , 256 ])
shape: ( 276 , 276 )

可以看出給原圖四個方向給加上10維度的0,維度變為256+10+10得到的圖像如下:

再舉幾個簡單例子:

1
2
3
4
5
6
7
8
9
10
11
12
x = np.asarray([[[ 1 , 2 ],[ 1 , 2 ]]])
X = torch.Tensor(x)
print (X.shape)
pad_dims = (
           2 , 2 ,
           2 , 2 ,
           1 , 1 ,
 
         )
X = F.pad(X,pad_dims, "constant" )
print (X.shape)
print (X)

輸出:

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
torch.Size([ 1 , 2 , 2 ])
torch.Size([ 3 , 6 , 6 ])
tensor([[[ 0. , 0. , 0. , 0. , 0. , 0. ],
      [ 0. , 0. , 0. , 0. , 0. , 0. ],
      [ 0. , 0. , 0. , 0. , 0. , 0. ],
      [ 0. , 0. , 0. , 0. , 0. , 0. ],
      [ 0. , 0. , 0. , 0. , 0. , 0. ],
      [ 0. , 0. , 0. , 0. , 0. , 0. ]],
 
     [[ 0. , 0. , 0. , 0. , 0. , 0. ],
      [ 0. , 0. , 0. , 0. , 0. , 0. ],
      [ 0. , 0. , 1. , 2. , 0. , 0. ],
      [ 0. , 0. , 1. , 2. , 0. , 0. ],
      [ 0. , 0. , 0. , 0. , 0. , 0. ],
      [ 0. , 0. , 0. , 0. , 0. , 0. ]],
 
     [[ 0. , 0. , 0. , 0. , 0. , 0. ],
      [ 0. , 0. , 0. , 0. , 0. , 0. ],
      [ 0. , 0. , 0. , 0. , 0. , 0. ],
      [ 0. , 0. , 0. , 0. , 0. , 0. ],
      [ 0. , 0. , 0. , 0. , 0. , 0. ],
      [ 0. , 0. , 0. , 0. , 0. , 0. ]]])

可以知若pad_dims為(2,2,2,2,1,1)則原維度變化是2+2+2=6,1+1+1=3.也就是第一個(2,2) pad的是最后一個維度,第二個(2,2) pad是倒數第二個維度,第三個(1,1) pad是第一個維度。

再舉一個四維度的,但是只pad三個維度:

1
2
3
4
5
6
7
8
9
10
11
12
x = np.asarray([[[[ 1 , 2 ],[ 1 , 2 ]]]])
X = torch.Tensor(x) #(1,2,2)
print (X.shape)
pad_dims = (
           2 , 2 ,
           2 , 2 ,
           1 , 1 ,
          )
X = F.pad(X,pad_dims, "constant" ) #(1,1,12,12)
print (X.shape)
print (X)

輸出:

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
torch.Size([ 1 , 1 , 2 , 2 ])
torch.Size([ 1 , 3 , 6 , 6 ])
tensor([[[[ 0. , 0. , 0. , 0. , 0. , 0. ],
      [ 0. , 0. , 0. , 0. , 0. , 0. ],
      [ 0. , 0. , 0. , 0. , 0. , 0. ],
      [ 0. , 0. , 0. , 0. , 0. , 0. ],
      [ 0. , 0. , 0. , 0. , 0. , 0. ],
      [ 0. , 0. , 0. , 0. , 0. , 0. ]],
 
      [[ 0. , 0. , 0. , 0. , 0. , 0. ],
      [ 0. , 0. , 0. , 0. , 0. , 0. ],
      [ 0. , 0. , 1. , 2. , 0. , 0. ],
      [ 0. , 0. , 1. , 2. , 0. , 0. ],
      [ 0. , 0. , 0. , 0. , 0. , 0. ],
      [ 0. , 0. , 0. , 0. , 0. , 0. ]],
 
      [[ 0. , 0. , 0. , 0. , 0. , 0. ],
      [ 0. , 0. , 0. , 0. , 0. , 0. ],
      [ 0. , 0. , 0. , 0. , 0. , 0. ],
      [ 0. , 0. , 0. , 0. , 0. , 0. ],
      [ 0. , 0. , 0. , 0. , 0. , 0. ],
      [ 0. , 0. , 0. , 0. , 0. , 0. ]]]])

再舉一個四維度的,pad四個維度:

1
2
3
4
5
6
7
8
9
10
11
12
13
x = np.asarray([[[[ 1 , 2 ],[ 1 , 2 ]]]])
X = torch.Tensor(x) #(1,2,2)
print (X.shape)
pad_dims = (
           2 , 2 ,
           2 , 2 ,
           1 , 1 ,
           2 , 2
         )
X = F.pad(X,pad_dims, "constant" ) #(1,1,12,12)
print (X.shape)
print (X)

輸出:

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
torch.Size([ 1 , 1 , 2 , 2 ])
torch.Size([ 5 , 3 , 6 , 6 ])
tensor([[[[ 0. , 0. , 0. , 0. , 0. , 0. ],
      [ 0. , 0. , 0. , 0. , 0. , 0. ],
      [ 0. , 0. , 0. , 0. , 0. , 0. ],
      [ 0. , 0. , 0. , 0. , 0. , 0. ],
      [ 0. , 0. , 0. , 0. , 0. , 0. ],
      [ 0. , 0. , 0. , 0. , 0. , 0. ]],
 
      [[ 0. , 0. , 0. , 0. , 0. , 0. ],
      [ 0. , 0. , 0. , 0. , 0. , 0. ],
      [ 0. , 0. , 0. , 0. , 0. , 0. ],
      [ 0. , 0. , 0. , 0. , 0. , 0. ],
      [ 0. , 0. , 0. , 0. , 0. , 0. ],
      [ 0. , 0. , 0. , 0. , 0. , 0. ]],
 
      [[ 0. , 0. , 0. , 0. , 0. , 0. ],
      [ 0. , 0. , 0. , 0. , 0. , 0. ],
      [ 0. , 0. , 0. , 0. , 0. , 0. ],
      [ 0. , 0. , 0. , 0. , 0. , 0. ],
      [ 0. , 0. , 0. , 0. , 0. , 0. ],
      [ 0. , 0. , 0. , 0. , 0. , 0. ]]],


免責聲明!

本站轉載的文章為個人學習借鑒使用,本站對版權不負任何法律責任。如果侵犯了您的隱私權益,請聯系本站郵箱yoyou2525@163.com刪除。



 
粵ICP備18138465號   © 2018-2025 CODEPRJ.COM