圆面积与勾股定理推导
下面的动态交互图都是来自geogebra官网
圆面积推导
UEsDBBQAAAAIANplbVO4/0Dn/wQAAOElAAAXAAAAZ2VvZ2VicmFfZGVmYXVsdHMyZC54bWztmt1y2jgUgK+3T6HR1e5FwDYYSCZOJ+3MzmYmTTubzM7eCiOMNkLyWnKAPH2PJGObAGn4aULScIF8ZP1+50g6knz6cTrm6I5mikkRYb/hYURFLAdMJBHO9fCohz+efThNqExoPyNoKLMx0REOTcoyH0iNTjcwcSRNIxxzohSLMUo50SZLhCcYoaliJ0JekTFVKYnpdTyiY3IpY6JtKSOt05NmczKZNOb1NWSWNKFI1ZyqQTNJdANCjKDRQkW4eDiBchdyT1o2X+B5fvPfL5euniMmlCYiphhBhwZ0SHKuFTxSTsdUaKRnKY1wKpnQGHHSpzzC34yEfh9mlP6BUZEJOHn47MNvp2okJ0j2/6MxxOksh6KLfFZomjTw+rPkMkNZhLtdjACrCfoRDsIQcPF0RCLsucSczGiG7giUUMSQXMvY5rexQ8JVUbCt6YscUPemXaQXDPQDOJHSFDThY6RSSgf2yfUQHkAtM6vhWnmxlNlAoWmEr8gVRrMivHehTWLZXLP7osqwHqtnvIi2LT9tFlifBnhAUyoGkGiBsr8V5U7PUjYBUDbBa4ZcVPnzIHfeIa+DDMN8U8pfRZ1tsBVbP4CJAbpkw/eJokb3QvxNE2hznXHrnfFeGS9acHsruuAHQH/g/1WStUkcQ2X+wZ+R45TT6R7BcyYqiJdWKKEH23kXdejGEXt+5FDrlsgNDgdPj1h8K6gC9w7spizXPPzFBrB62fok+I9MQ0l+t+dKoP+LBZUx0BiDNI+rYZiL2PSpRPs5z+7qumi1vZfQRlXmvpWxK+n1LBVNjFRyuZ7LlWFv59D92oYtc81NzRdCw3YLmEFL1VLXbilNb6Cor+ImI0KZPdeiJa3XW0Zmj+ksfNfZ4elsPm+JO5KVmqhrbTuvaO263QAzeGHVbTCJ10Hs7sAclPluaJs7GVFnu6EfeO3V9BrdAzaiO+ierDD8U4iVI/DulG0+D67wpEmmqWJE/GhfwmdJbUR/m8ulPrpOH7u3ceOdY9iyOg2htAf27Xvu57ePPd/vwPb/YM3dAF7YgxjCLqJC7Ny150d8oINmPc1YCnPaPd9DOKnk2H5jU8ceNmssocLNuDAFeTbVDALIe28kc5Ew9a08gwDe3psAom12aHfGpujc5Th3Cc8DF7Rc0HZBWPLZboNoNZvCpFVzkR+sDO3tdjWvaR55izp/Bi9d5GOa1SaGq7lc2k7opgYoL6+fGz1pIlhnJuuNQnE2AAsaM9DREShvTGD5N15+X0mea7iQg3suUV3IOSuesIEeGbcO6h6yqbEWVyYayYzdS6FLGsgMgnNur+4WDjFWWU/wmNe6YKu7Tc5EJLwajOdOqjTgzuhtoofHd6sUU2cIDbEIO42g1/J7Ycvr+t3jsNd5IlK/VyF1L55MdNk+wBp2t5CNhjkocHmYkyyuzkbBaV4573gNz++2w1ZwHIT+8XEbHqCSfW8D/ywjqi3NIR7mWQtYSvrTzum4jHNVnT07qSQEJvmmnBWSTxlnJJvtZusbEdZ0WvkLN1aofTpwgIDXdwWwJ1XTLpxUu6F3nRkyoCjguw44P7CVMPGJxLdJJnNRWHZ9GdpL14tl4hC3A30pOYUt7rxbn+Zy7WZ4aeFfB6hYa19y9MH3M/FtX04X1qofXG+pagRcWqF2Y7tiBDy9l8vr3NGLm8I253IbXSSucVDqCmjWPmlqzr+fOvsOUEsDBBQAAAAIANplbVMGOJCXbwMAAEURAAAXAAAAZ2VvZ2VicmFfZGVmYXVsdHMzZC54bWztmMtu2zoQQNe3X0FwX+thSY6CKIXRu7gXaIsU3XTLSGObrUyqJG1Z+bX+Q7+pw0ccuU2COkgD9OGFhw/NDHlmNBJ19mK3bskWlOZSVDSZxJSAqGXDxbKiG7N4fkJfnD87W4JcwqViZCHVmpmK5vbKvR72JsUstWOs6ypat0xrXlPStcxYlYr2lJCd5qdCvmFr0B2r4V29gjV7JWtmnJWVMd1pFPV9P7n2N5FqGaFJHe10Ey2XZoKSEly00BUNjVO0e6DdT51eGsdJ9P71K+/nORfaMFEDJbihBhZs0xqNTWhhDcIQM3SAS5eC11P00bJLaCv6vzC4S6jtEkm9UVvUD8oVnSZ5TM+f/XNWS6kaTeSuoshADl5cedEjWITl57Z+buvnej/Y+8HeDUbWoF7JnsjLD+i4okZt0GtYkOu4a3D6pWylIqqiKXrAiCUxykuUZYqhaLsVQ4uTJPa/JCvjJCmS1Ou3bABFtgyNBq9sY2TtTLrRBWt18OWcv5YN+JksXC84ZoMlow1g3NG57gAa1/I8cVuYBIPLp7E9LuCdGVogZsXrjwI0xjMfKdnGf7xpwKal1wG+BLFFIlJpsoudkwEFXn1lezb9donrDyhw9soKHHbquFLFd2TuNeb+wnnqxdSLzIt8TwQ+Cb9Mbf8r2jGF6YuGajt/FoXk+S6N2I7r6b/7oM1Dd5Q58dRlzrGBxuUhSfzHKNvbLcT4F43o3XRJaAPu+cvn+2G727JmyoDmTIxu3pd24lvuxZ/O/W6QaF/AiN+F6x/ww6L6IH5l6QCmCUpE6OS+QOWPhTHUYV9VfVENhXZvcsHswy14ubM03gY1sDwaqmyHFTRKihuuo6EbtNOA9iF30rHhSPKpi0funxejjJ5kAUleFnFWZI8Wm4em+FFk56pe8TU0wA7RYmCfCm2a+GdxNnNorfg92F4MWJE5Vocx16dLWVcycPGl55r+Njl7obheH1JNnpBq4Quzp1pi7xekKsDs9/nGtsdVNf9bVY9h+WnDGvcGFrb69ro/ZuoT9DFLY5GV9jcrkvwkyfA880iAfsJJ49Zzhh30h4nBiysUwd6xRw8yL7yYeXHiRXnnsYSvu5bX3NwfWb1RCzx33/amHKYOg5w9LMiod+u78mT2o1l/Y/hJ3pbHSve+2EWjzwbR9TeK869QSwMEFAAAAAgA2mVtU9Y3vbkZAAAAFwAAABYAAABnZW9nZWJyYV9qYXZhc2NyaXB0LmpzSyvNSy7JzM9TSE9P8s/zzMss0dBUqK4FAFBLAwQUAAAACADaZW1TeqaDVkALAAADLwAADAAAAGdlb2dlYnJhLnhtbNVa647bNhb+nT4F4V8zrceWSF0DO0USBHtB2i0yu4vFBllAtji2dmTJK8mXSVKgfaKg/dWnSF5pv0NKtmzLGdszSVPM2JSoQ/Jcv3NIufftchKzuczyKE36LbNjtJhMhmkYJaN+a1ZcXXitbx991RvJdCQHWcCu0mwSFP2WTZSrcbjrOC6nvmA67beGcZDn0bDFpnFQ0JB+a9FiUdhvGaYMHR4aF7bhhheWHwYXvhyYF0ZoeKHjCR4EbouxZR49TNLvg4nMp8FQXg7HchI8T4dBodYbF8X0Ybe7WCw6FWedNBt1sXjeXeZhdzQadNC2GMRL8n6rvHiIeTdGL4Qaxw3D7P7ru+d6nYsoyYsgGcoWI9Fn0aOvHvQWURKmC7aIwmIMgTlEHctoNIYuhIebLhFNoZCpHBbRXOYYWrtVwheTaUuRBQk9f6CvWLySq8XCaB6FMoOiOrbgjs+F4epvqCXNIpkUJa1ZrtmtZuvNI7nQ09KVWtEyfIybR3k0iGW/dRXEOaSKkqsMql3d58VNLAcBVi2yGe7XDJlt/IEgeg1qy4CcWg/9luu5bSGsNnhr23apgPrKLVakaaxmNZjts7dvGTe4wdrUmLrhaBxHPzJ0nyF0Q4/QWLqxNY2lh1ua1NI0lqaxxDGClh0bklZyirqcpmG06ePgoxSwJadXkxN0JnvL0HDdCEZ84wL8U2OVtxCZGlc1pqEbDFW9Hn0pfTl3lAgaOUEi6GG1qvaHI/ylWlEFyKEr8ru46EpITiFSBIN+6/HzPz178uLxLgPc3iPyHTVdsWBSIFSLYi31rz47S4o7Cb1akTv2oSs6GyF5L6sfIa/JESn3oWOL0PawNV101UCoQiDdqnAjDPrcmrBNLFlni5nMBnDYzPQJDwkVODNtZqHHQ4/LBPXZpsUEIxJTMAV6lgIQB0/oMb4BxAw40mYQjAFdISQnPLVtZoPMpbEETQ7gBaOAy4oaHOEjqE8IfFSfsPAhhLUxka2nAR+2cNQVIZqN+RHouFKdwmOWj4Wow3ZNJsAD7l2DYUZMDF6VHEBx+jeZBnCXcY9hPohOMxtHGeR0P+l1q3zZK43B8jHRVmsWcoLKAcxDBtKXthLMAya1qVzSZWUqqNZjDrWlvcha3oa9bLJmzWgOdUI9BPtM6Vtbj1uVAXGtTEjm3TQhNG7VlE6JESpHv1Y6Fud1tXOHOZy5ZEW4EXKu4xHvmJQzGMyhoXuMgiouzaOVdscyRoVXKkkpMkqms2JTecMJlTsqWIp0izxMh9dPtrUtgxyV1JoMZc26eNJlzkZt9aAXBwMZo0y9JF9gbB7ElAvUCldpUrAqMDn19bqqjOvJ2TCOwihI/gnbVzXT97PJQGZwOlymJKOahIazvfWeIhmmaRZe3uTwFLb8t8xosEAt7BqeLXx4ss895KQb/Yi7dscyhOk73HK5bwpoNh8G5OaCd1xhuY4wMdLzDYLqmz3PfL22nF/KooD8OQuWEo5a6m6UEcbUbv6SP0njddc0jZLiaTAtZpmq8ZE+MxLrcTKKpdKlsjIK4eH1IF1elllGz/X3mynuSukHo6dpnGYMUchtZCFMplokYGoVDbG2ooIKQYNvUJRz0KSr56aP0AeFakFDraKCmTVrpajgT4tpltMEyyjX2wuotO5Wykmorp4lUfG8uimi4fVaVBqgXQBTK5/dnLMkufucve6W+/WuZZbIWLtSAmPO0lmuPVmvpRiZ5fKHoBg/TsIXcoQo/CEgLCwwtSZdsxzKYTTBQN1fKi8gw/4DrOreUI4yWYkYq62TVq16SvqbZjII87GUcPUNR6+TKXEq9nuoumKpEtwkAkpcwH6TYKkKOwQH4l/FVC8fZtGUfJYNANjXcu2VYZTTFKsOooZKcsiGiE8TqLcg1WJ/OSvGKZwFY4KCeiiqYznBxogVyj2T2URmtPksDVWoPRf4ntW5R4DDRiwd/BeYskrs5YiVRvF4j/uyIJ6OA9qnlXgRBzcEIrUF1GzfpWG5bIUr8AAQKkVhGqUnBGEwyNN4VmCrC/Mk662uZqyEIeyEsJPV9eoNhmHcVbSs6RGqiV7DlVZ+oTzxsbbzhletY6oYw3WxhYSnUmFShri6+HMUhlLBfulKcC9lDm1Vo2Mg3oHKxEF9LLb9Nwpd1tbslkYicy3hYjgfwDylwq+QAJaUJs6KNgvabHDO+uwMKjkr2AULzumrvMGjb9RNoG7OWRcZGD3V6lezRHmMWnTTMapHyTzIVra+Ut6x3xdqKqs7Q4V4u+7gltB3qz9U2LWlVEIPrVFcHarRjwbAZDsA3NMCwORIZiuZlQbuIwhWYEFaPCEKXGwsfs8oOMlgOyGQlCFwxtnXbHKui6CP2zXZtqtpHYlah/tQtr1WmV02fGgzQX5SFP00Rnj/W2mFDz8BV2CS242AIdvppcO5JXzfcm1uO5YpvLtYZZfHX+qe8v63g1wFg3a4tCzP9T2Uqdj+edx17pXLccVkBiaHaX4GRg/idLzj1B3f8j3b9qBURzgone+VUZxLa0aVOrNzfOVRcjC7i129okY3POEKcAwHuGe9FnDvMlWaSIBIlwZ2dAexiqHbqr1X1l6XnJG1zwqTnPMX5Odv2Nn7d6VW193gWHOp9iNN7JcPVpOfhDYOcgPkoQYCUVNJdFySVgVwTknH6MC8vuN5jusb3DJ9GARJCOEkhEdm903Thbei+/VKw7X6WR1dkJIm01gu9WMlKu20Nnaxunen6P4oNvxaeXOl6IPA4ddPCg4QdRIkIUvUCc6l/N8Mb5ikWlKfHAQG7Pufs2swG5j91jUarnA8EJTk9MqzYkUKggwTppMXMp/F8IQ3u0aB2+2a5P07hEvH4cLyfM8wsZ12Bc5RiNT1TE+YFkDG8bBv9zQp5whhwxfYzGP/beGUh2h91/K565vcxCAuXKK92CWmsnQv8SFM+CXtlmxNonGhaElsk9KPY4HaNy2gkODPLkyneSqCkJ25mjl0FekWh3tEdxTtluSKhR1SnG3tp91iwWpiQSlpV0cNcgmLSElkDvf2uS9s3+NI0zhu0Sr6Ubtu6bA7cRNHeQ2Qrm9DpGN3Dsch0imV6xbOlNViI86U5wbHwc+Hn2spQJVQHNpGKt1IAvUHx6YBrPDF5IEdcCgTwbYvf/pEsImwfwX5Frq+eWOQCQzKCe/Of2yzCoVfni3QdzmbvHx93WbXr87xhRhps+SVCoYN4M2vj4gPEJ9kqS8nPMo689TwOCjtnakqThXJH35GWCxQMH3NnulJXubaJmS6Osk2BYH+qwOT53w3eQK/4bx4qU7oaXKHe5SNdsruEuq3SCkbbZNWGWSTVOXknVnt5mndg6dtJG1kVhgqf99h2mM4OIaFZt0CVg5X7jG0TYbwdAFxGG0zaTPlMTkVznlaTq3XohvnUn+0nHoQaDyNsiGmgXrS7GWFBHOFFe0t7Ni6V0jxqgkpJjtIMY2g9p062/Nd20eRZRo427Atl2qvzT7bOayvcaxo6LOa5jvGrUiS0w556UiSXmtpz3I2tjnllugz+tbHyoGT6jVsAfVuse5Ek1eUb0QtyahenWTouJ1+RnJMzTb8rIXy366ucllQhYaSXlVkF2VM3lbRNQC7Gr8L7fde0R1y8ANfqd6RoGRAiXb4wQ/f8wbsvs6k8Bqqxho/hjXxaVmbr073LsZUN6H6PdJ751/MhkM7c8Nx6GfeXxySlV6k+Jmq3ElOZwUdsn74CduMoYKZgnBmjtutAVX2Om6Awqj9gzYTn0K0fWUyUgb0ekv2sxuSWkOyshqSn/AakhoFzu1L2PzI3Kej/+jk97G3fXb1w4w/TPKDtta/JlC/Byp/N/7o/1BLAQIUABQAAAAIANplbVO4/0Dn/wQAAOElAAAXAAAAAAAAAAAAAAAAAAAAAABnZW9nZWJyYV9kZWZhdWx0czJkLnhtbFBLAQIUABQAAAAIANplbVMGOJCXbwMAAEURAAAXAAAAAAAAAAAAAAAAADQFAABnZW9nZWJyYV9kZWZhdWx0czNkLnhtbFBLAQIUABQAAAAIANplbVPWN725GQAAABcAAAAWAAAAAAAAAAAAAAAAANgIAABnZW9nZWJyYV9qYXZhc2NyaXB0LmpzUEsBAhQAFAAAAAgA2mVtU3qmg1ZACwAAAy8AAAwAAAAAAAAAAAAAAAAAJQkAAGdlb2dlYnJhLnhtbFBLBQYAAAAABAAEAAgBAACPFAAAAAA=
来源 https://www.geogebra.org/m/tdtXHnCr
无文字证明勾股定理
UEsDBBQAAAAIAAtmbVNu8GmU8gQAAFglAAAXAAAAZ2VvZ2VicmFfZGVmYXVsdHMyZC54bWztmltP4zgUgJ93fkWUp90H2ia9gggjZqTVIjHMaEGrfXUTN/Xi2tnYoSm/fo7tXNwb0FBBxfQlznF8/c6xfWzn/HM+o84DTgXhLHC9Vsd1MAt5RFgcuJmcnIzczxefzmPMYzxOkTPh6QzJwO2rlFU+kFqDoa/iUJIEbkiRECR0nYQiqbIE7tx1nFyQM8Zv0AyLBIX4NpziGbrmIZK6lKmUyVm7PZ/PW2V9LZ7GbShStHMRteNYtiB0HWg0E4FbvJxBuUu5512dz+90vPa/365NPSeECYlYiF0HOhThCcqoFPCKKZ5hJh25SHDgJpww6ToUjTEN3B9Kcn6fpBj/4TpFJuDUcS8+/XYupnzu8PF/OIQ4mWZQdJFPC22VBj5/5ZSnThq4gAeownMcuH6/D7BoMkUqRielaIFT5wFB/iIGZZKHOreOnSAqimJ1Pd94hM2XXpGeEdAOwHSExKAHz3VEgnGk30z/4AWUstD6tcoLOU8j4eSBe4NuXGdRhI8m1Ek0mVvyWFTZtWPlghbRuuXn7QLqy/BGOMEsgkRLjL1GjAcjDVkFQFkFR8hPQB4cIZdVrkKGQb4r5e/MZus3Yuv5MDFAl3R4nCgsulfsbxxDm23G3SPjvTJetuDeL7jM6SSGoVBP8Gb4LKE43yN4SlgN8VoLFXT/9b6FcsPeHjnU2hC5wmHgySkJ7xkW4Nz5Vrnq5S8Sweql6tN58P9sSUkEdERCIp8GP8lYqHpRwfyapQ82/W6v8x786zL3jX8jWxiTW9g6HDxzIkFL3nD0NEuBYyVVXG5LuTblZi7cr2bKPJNU1XXFJGyogBK0Tax15h7j5A4yf2d3KWJC7aqWbWe7plK0eEpL/aOWDkFL5dzEHlBasbf11MzX2boat0Dx76ysHSZqG8Tr3ZKDMtjdrbG5EQ2aDXa/09tMrzU8YCN6gO7xGsM/hVgv9kdX6yUz3waPGKUSC4LYc/sLuoitMfyjlCsNDI0GmrRq5z1fv6v11geKKzZclHiIJqwQLu0WFEMTUUM0btZbQDxQ09/OL+RMnUOX3r6RKnK9DzYBNNpIkRgzM1PC1NHRlSwggNSPSlKH+rmn5QUE8PVRBRCts0NLU5I7lybHpUl46Zuga4KeCfoVkWabN63LBKYey5ldmdF7zXYchzw3fAytvoH/zLIZTq3BflPKlXX0zXCH8jL7nOZFg7s0hO1qF5REYCMzAlo4AT97hmAhVv72WHCaSbjuglskVl93Gbuck0hOlYOlFGL0oZ8TkivbMImmPCWPnMkKhKMs/JLqO7JX28qqZaq+vnbeRSym9ai7NFKtCHM0rhOtnppt0o+NFhqiyQ5a/qjrjfrdztAbnvZHgxeS9kb7Ib1uM57S4a5Ws5PC/KK0NLROIMv5aE2LndHQHwx6A79/ejr0Br3h/ndlf1YR9Q7jEM/PtI7Xkm5CDwtBk30X5WEm6iNdI1VMwOQ+lJ+BspxQgtLF68z5GaYS5/VSf6cF6wb+AJFu7wqAjuumXRnJuuo2nZkQ4Mbg9wjYsutKCPuCwvs45RkrrNdeb/bS9Xf3b7ZDG3NOMewxy259KWXrinVtRd8GyMS/63iD31DC+zHPl1acZ+6JRD0CrrVgXX1uGAEv7+X6YnVSmMI4ro991HkhJNbhyvmhen/3iaiJu7PDDd4WF8VWWNv6k6hd/rZ08RNQSwMEFAAAAAgAC2ZtUwY4kJdvAwAARREAABcAAABnZW9nZWJyYV9kZWZhdWx0czNkLnhtbO2Yy27bOhBA17dfQXBf62FJjoIohdG7uBdoixTddMtIY5utTKokbVn5tf5Dv6nDRxy5TYI6SAP04YWHD80MeWY0EnX2YrduyRaU5lJUNJnElICoZcPFsqIbs3h+Ql+cPztbglzCpWJkIdWamYrm9sq9HvYmxSy1Y6zrKlq3TGteU9K1zFiVivaUkJ3mp0K+YWvQHavhXb2CNXsla2aclZUx3WkU9X0/ufY3kWoZoUkd7XQTLZdmgpISXLTQFQ2NU7R7oN1PnV4ax0n0/vUr7+c5F9owUQMluKEGFmzTGo1NaGENwhAzdIBLl4LXU/TRsktoK/q/MLhLqO0SSb1RW9QPyhWdJnlMz5/9c1ZLqRpN5K6iyEAOXlx50SNYhOXntn5u6+d6P9j7wd4NRtagXsmeyMsP6LiiRm3Qa1iQ67hrcPqlbKUiqqIpesCIJTHKS5RliqFouxVDi5Mk9r8kK+MkKZLU67dsAEW2DI0Gr2xjZO1MutEFa3Xw5Zy/lg34mSxcLzhmgyWjDWDc0bnuABrX8jxxW5gEg8unsT0u4J0ZWiBmxeuPAjTGMx8p2cZ/vGnApqXXAb4EsUUiUmmyi52TAQVefWV7Nv12iesPKHD2ygocduq4UsV3ZO415v7CeerF1IvMi3xPBD4Jv0xt/yvaMYXpi4ZqO38WheT5Lo3Yjuvpv/ugzUN3lDnx1GXOsYHG5SFJ/Mco29stxPgXjejddEloA+75y+f7YbvbsmbKgOZMjG7el3biW+7Fn879bpBoX8CI34XrH/DDovogfmXpAKYJSkTo5L5A5Y+FMdRhX1V9UQ2Fdm9ywezDLXi5szTeBjWwPBqqbIcVNEqKG66joRu004D2IXfSseFI8qmLR+6fF6OMnmQBSV4WcVZkjxabh6b4UWTnql7xNTTADtFiYJ8KbZr4Z3E2c2it+D3YXgxYkTlWhzHXp0tZVzJw8aXnmv42OXuhuF4fUk2ekGrhC7OnWmLvF6QqwOz3+ca2x1U1/1tVj2H5acMa9wYWtvr2uj9m6hP0MUtjkZX2NyuS/CTJ8DzzSIB+wknj1nOGHfSHicGLKxTB3rFHDzIvvJh5ceJFeeexhK+7ltfc3B9ZvVELPHff9qYcpg6DnD0syKh367vyZPajWX9j+EnelsdK977YRaPPBtH1N4rzr1BLAwQUAAAACAALZm1TRczeXRoAAAAYAAAAFgAAAGdlb2dlYnJhX2phdmFzY3JpcHQuanNLK81LLsnMz1NIT0/yz/PMyyzR0FSoruUCAFBLAwQUAAAACAALZm1TDMeQ/ekVAACQ0AAADAAAAGdlb2dlYnJhLnhtbO1dWZfauNZ97vsrvHj4nlKUbXnsr6rvquSmx0ydSve9q196ucChnAAmQE29+sfffSQZPAICU4jUTUKMjeRhb+kM0tHx2T/vR0PjNp7OknR83rG6ZseIx720n4wH552b+ceToPPP7/5xNojTQXw1jYyP6XQUzc87LpVc1MNe1/NtOhZNJued3jCazZJex5gMozlVOe/cdYykf94xg54TRr3oxHWD3okTsugkumLhSd/2Azu4skzH63cM436WfDtO30SjeDaJevFl7zoeRa/SXjTn17uezyffnp7e3d11szvrptPBKS4+O72f9U8Hg6suth0DjzeenXfkl29x3kLtO8br2aZpnf7n9StxnZNkPJtH417cMejRb5Lv/vHN2V0y7qd3xl3Sn1+fdxyGR72Ok8E1sGAmdk6p0ASATOLePLmNZ6ia2+UPPx9NOrxYNKbfvxHfjOHiuTpGP7lN+vEUQHWMdJrE47n8yZKXOM0qn90m8Z04C33jF3A6xjxNh1cRncD4+2/DNm3TeEYbS2xscdQUuyYTG1tsHLFxRRlH1HREUUeUcUQZh4H9ZJZcDePzzsdoOANWyfjjFIQt9mfzh2HMb0UeWD6n9QyPM0v+QmFcrwNUCVzc8zPzmWPyj3jc3LOhxuKK8+mN4gWzy3HiNrmcvdMDAp7c482jq/POxasfXj5/f1G8On6uvXqQI9Iitv42sAF5tGEGEYQvIIo2jtz1xK7PNxbnH7uBOBrSrrcba9lDWW4ORNd8xv/xT5W1li7J+9hml2RK1ImmtNsVvUK/a+eBnWBzjG00l0e+pmOGfiswK7Qln7pSVbyJLboI37ZDfrg5+a6FS+Zvy7AMFz3WNawQstKj7mgblms4OBLgiG8wOuZajsEMKmIxg4tVh/dcD7/Qz/jfdU3DIvGLBzMguvGQNkls1zVcFPOpLskED50btUx8qDTuCB9GxxjDhx9jDj4kw12cyBWnwX24zOPfSJS4OL9LgBr8IAsMJ8SF6IDrWwbDPWDfNw2cESfGvfLngJ6gf5YhVIRv2IGB8+HR6czmboJ047Z5dprpwzNJhjG7prLZNefxCIYAbh7PQHgJlkAPblJQ5ROWGVWANjA82kq+iK2gwJdLbOZI8+gg4CF5a3C8BXu2kxGI75xCordIIRB3cqCT6gXkOC5Ax8XtPOy2Z3i24ROLaEYe9kjM2zipbYAwj6o2kAKjLJ0lC3Sv4yEMNgkSBzIZT27mRfB6I7JeeGeZp6Xi/bT3+XkZ7TiawTBaFoPZsrSFhBlTMJW+ORtGV/EQVucltQXDuI2GJEr5FT6m47mRiQubjp2dcqvsLL7pDZN+Eo1/B/eZTfTmZnQVT9Ho8DWlZ+QnoepGo/nGi/TSdNq/fJihpRj3f8RTquyyrhs6nhl4sFXNwO0YD9kvfte2rMBzPTdwHM+BOJz1ImrlzO+i11iB6fu+aXkefnmo/8lxxJXj28t4PsfTz4zoPkYzlcgNpiRhcjs/zZ6nw+WhSZqM5y+iyfxmyg12mB1TeqiL8WAYcyQ5x7Bqe5+v0vtLYZKgCdC5PjxMsCef/WrwIh2mUwN90HbxlDgZ38JwoS0vQ7e2KAUAUQb/o4Q8B5108bsVouOjBN+iDG15KZAsbk0+Ku5PPKYlTxPdJzPhKwDRfKPiTYSM5JtxMn+V7cyT3uflo1IF0QBwat5ii+eURXY/59lpqfGdfY6n43goGtIYZN6kNzPRjsW1+I3czOJ30fz6Ytx/Hw/QB99FJAnnOLUourzlftxLRqgojkvwIiL2N9yqONqPB9M4e8Qh94MEtLL7GLPJNI76s+s4RkMvNPN8Mf442e2fwVodxly9jRLIiBPwN4ruuUWMroHez3vU2aw3TSbUZo0riOvP8bJV9pMZnWJxgEoDkhmeDf09HQPeOUELZ/Fmfp2isaBONKcjvORoFI37xphriJ/GhA3kBHechGiKzPPO/QUYxQms884D/8ofLb2ZZwUuxFPJs5GsGMYjuFPGnDd73nMW9F/wsxPPRnr1CVcrt48lLfh90cY92F1o4rRBC6dNNJxcRwukh9EDCaKcKOOne53289BLRmYGMAZlD/z/vxaCi98p9VxRheWPVkiUD1mB8R1/3DoIy7g9V8Ht+Xa4WbaQMHwrJcyW0EVjdBLeqLK2iTYfU9vDN3HL+IJhiAcuIHM9cQn6CcTmXlB/Hz2UMIf7R02Wg1yAPVoN+xRnyjCNtgO9KLBbaqkEHUDL6ixE+/waEhTjFBCYZB1LTcO//Jj0+zG3PTIMhsTNoqODy6rY/BzHE9JXb8cfptF4RkNKRXmp1vQ52gX8X6g0+xdVBqQnIX7P3XgTA4du8laXTJnVjT7cqtG/TqbTdFoC/IVo91woF3H/vwjm6P8roS+rHFr0LNHcBMztJMhlPEp6ybQ3jOsBzcFXgLW3GlBo46Q3iaZLUHsHFCrbiA3Y7vH4FveZwnK6xxOjyT9gQxTQHg1F3wMgElPY4Ne/aIPDvDo60DS5Ny5ExQtR4sIma6dLLeOC8aoXjti4i3uNv4zFrXKf9byTjCZDMDR/JGHWZA5hqL3ZFPqX+FGlj/1LL4OId7CWu9YL3q0upqLlV1Q0gYb2wPVCAc2+atfq/69rHUPXqrMTONcF9l+q9KKXx28nmF2fBYEVhhZNNNgYD5EdkpmuY4eYZ8BYom2bGONo2Y64jAd0vF7vcRoKxFytJmYmz5ZBf6WFEQ0zrIojGRJd38PYEiZvgjB0/YAGlwAvioduYDnMwyBu4ARM4q2l3V3P38vVdos856YsCqvo0Cw2kAhxV+w6Qod9BSRm7AkqKyR+VCPxoxYkHpE/O3wYpOPVlHDbRQ4u55iZoC5kPpUZiDLX2EAhJ9hAIX/CBgr5e2y8884P63SduJGMJnHyRtxojnQFbjtpya35n+GROEUXw2F6F/dLROVZWN2IB+sa8T6fIrq5T4ZJNH2otLMt2vcanvbQvlcje727EdUWsEtBtMTV7obFPwJnCH8KlvFMJ7Rdk1ksPqFQCGDvdJ1C+eCIuEj05iLoQt/CWrJCHzEztmsL0MGHaPZBiatjgv6T3tDLMXQ0bscMQtsMA8zMe7aXa/ZyFlFLtIt+2/eHHf3YBG6MiJiFPzBLhNypiKOdx01WQfWD9lBZJXkbCokgNWG7k2y1llnmsa6wyUAelfksygyFTTYSNhkMLLLJfhQ22U/qNpn9VG2yz/qIzKZJmL15/4cWqGUuhvpwUStPK5iLGZ0qRQCWxEbXciwK4WEMcUGejxif4+FipDcXFcilaqujiBsWtmN5AQsRYeTbViAl7FEwIXSFtkxUEBfOTR1BNX3C15mJohXzo/ZWDAw7uJO2E3K/xneYmw0ymp7nmWj8pouP2cY82SqkfjoGpII6+VHXmB/FACwNea8wA2GSUsmJKPNFmIFTYQZSsBvMwJ+FGfiLuhnInqoZKNZcaTw0t8f5g0OL2TIXX/RWeDRsV8DcEc5ig8ZjXeYGth0GnueaHo4fERMiQktfJsqQWxSF0MAQH9rzfIy2Mha4dug7vhTgR0HFTG8qKnKo3jMigmr6hM5EFE2bn7U3bRosm4YusT8j8BftkTKxzKZgFguVisU8FSO6ZRvwddIXYNUagT9X7L5XKgFFr3QJy0O0F2PMdNzQtfExbXRlrid9uOC2g55ve8y3/DZaYhHft1MsGYFtGw1fQaSUUH4lUE4qKPMgsmaUSTotMdQiHkFOqDRMaXFBa2Iw22J+4Pr4mIjM2j7kb0Xo3W5ULKP3FrH3f4r1Q5uRQaW1oKN5blHOJLhdZqHNM9cKfEhid9Xox17oaIoNJgg5F9XI4Ncqwue1LsLnhHUt5mDdcRAyrFl2A19IdwueESSRaQdBYEPu+8LD97o+Vlq6oQ+BZdketGN70qgJc6BGiE8riL9RQfyNLoh73dAxLSfwTTcEjgQs2R3AG+N9oY0ffAzCiqHxMtxy2nevcC+a+JcK4G9VAH+rC+CW3yW8WQAb24VYcYSlV2nhB0NcNvAMjCXe71TwfqcL3uUGnrn9ge37FgPcXuDBsKkXKHLuZ49DiK8F2qRTMTD4RgwM8jHAyhgiOiEVHfEeQZPJ/AuKj/kXjCR+XqeA60YPnebRwzXKTH3gjQeZg18XN1zU3t1srGsjghVmxLa1Mppvtf1hwobYGt5OqyEONFJod5GbACkKfDdkoeuiVesU1rpmwvgYKMEgSAl5yKKVYVCI20EN18OPmIeAGXlMnJAI0Z8Ts0vzwEsnNBCeFI47GBMIYTc6Pj6hLwasIORNiHmMGjLP8k0vWDWKqxsjJMu1Z6RuVECMIJYGEdB5QEhFau3gSR0oGl86v6SooYJpzg4KmFuiFX1Ny7tQdPgnxYCh8Jh/QfFPmb5O1bW1+1Vra8JK+0b/5FTDEXBSJ3DqRi2FI3vidTGJQeUtxBchHeYx8UHSQ3s+KhpZjCJXNLgfyAhIxHAg1NlhluljrgMTfnJp6VFQkupPyEmzjyEyhtSoZ18ve0lBPb+TS/wXgTmNShoQCCVNETqoMsmc6t6iLinqbRxr7ytX1SLsSOtWX9HUMtSgWVVTZyjqaq36wJp4qONQDSUnTqiGssYIhA9Hvp1ZEEqaOQ2rGcmkiPasoN2XTCU5Ll0zHVznyR0RJyTM9efjaehrUtTL4W8aDIfqraYAIXUKQ5GH0Gbu9PBPGhCn1VT8CLR0vI2W9r9qLU1o6d/WG9S0gkOtVcNfZziJGRe9KVkpfmrnJI5ZJZAI0Z6TTX1qDHPzTBBlj1qvbDRr0v8cg47eNFRO8FHxLNgOYV17V9e/8yxx9d51NS/QzWq9K1LOLZi70SPuy+6Cgip9VUtYyLfstFuwlcvLLeO+ekgjGM+QYVyaEnPs8zR1RnyPhG4ydHQbcr6vkHOrRM6t3uQ4ZXKOiZum3Gh3SgzdacFQRRvRq3KOv/vwzFhF2bbOqyhLN03iWisEycXW5R4kpmY1oucFDk7TRCRXXRIkYpXK7PyqEpT2qy5BaU43cF28Vg+rmbCyOjTFbJVNhylSzWG+if4kfR2zS9ZbECJ+DRHIYZaQoJ1Uuc1Yy1jDHNbvVbB+rwvWCLjENJ8ThBTDjZA+aTbbjA8swiSzAsuz8Gs92oUUp/tDW3pLObQvVdC+1AZttxsSyAxvwIHniEVi3CQ20bJtLOGzbd9lWLkjV+ccqGnLy+TA/qAC9gddwOZNGB4FhDyAZXC6BdpYNhYCZAZsHbwAjOIT6tCWoyatoM0dDLwStLxY5INQq9zCKSKu/nqArMoOayqzNx/ta+16MWcd+d2IOguhaxfeutt1XQevf3MD/HWw2k+Fm+3yLTdxcym44c5bUfSoc5NV2Yqb7L1U+80rUPAvQtDgUxg+1pvYDlbbC3YQnE+B3x7eVgvmfFOmEttMTrXLznvBDvfeimpYnZ2sSgs9Z4e05Sr8lDuPkGwnMJHIpsUYl2X7JpSJitJul59fZe8R7kHRKFVnKKvSQv95HIZKHSibWYdZZSN5hWl7IdYvYimLkqZvM5+85CfHRTGr/Dq3rpJXXhO/ruy/iRVbFW9PSC4sqHPwwlDfcVE0tPBmUo3HHOt5lHIwJ/WK78NR5ZEq6MhjJuFqBr7Eig8EsTOHhYFvOaHj6DWavwmR0tzIGRfFt6+oEkkVdCCyKQi+iUkShSFjnk3xqDQXsCrDoJ5USqs+Z8MXXxOgSiVV0JLK+tgkPtYppnQs6DnPo2RNWLDvIYOKvlTWvQZHasECe7+p2C2/HdhiaeNVOKAXOVaQZQjLbjEQFNhY4S+yrzgelg1RGj6wC+ul/Vfh1HEiNVqBk99VOPn9wHZ+G5ygJ9oB1kP7rssCH5OlWUIc5B3CVDbe2Uxx+2xVFpL2GJGqqcDIv1UY+fdB/eJ2+MC7sD1kAQUbWPACEz8LD8Qy6iAgTjDQBMf5UQiRCqZAyB8qhPxx0EGkdoQWhlMZNA/SkjDLd+FeSUYozWCAAVhEhTAW+nLwr0VGaufPpLvFlUdx+llx/ozK62AL4BSLF38+5uyYnNFSAl/6SFxLFGeWFcGn8jqAjxVakCVo4RbmEjAAxMJl/Flz4qTHpElOhinRJD0grjoKNA0UaaLyWtDU8DKc1e/JeUya5CyaEk3Su+EKpUDTtSJNVF4Hmg4lyuSsmurIqgzFkLKrmFNPfWQ1q6LJnF05aFCO+5Q9T7pUy/n1muCmtewNcL9Rhzurognc5fQ/IsVpOb8VeRd7TrfUhD6lEGhA/2d19LMqumfxLOU7tUIRJ1DOd8raz+LZxMPbZh7eqvOQVdGkF1SSjtXmHPPEbNo+e0HDqt38Ky4zASISbBRW8DYMN/JopfwphvlTjPOn+FRY1bsZrzVJOHLs7rxyaLehGaV1Qy2m3s8g3iUBf+1Qk9pKqG0XGK17p105Vl+v2ZY1CTuOiRrFNRTlxB3HxEsme46ClyeWwOOYqFFam1efeCvLlKsJOZtZaDJVphxPLGY7VrfQsiqaWGgaZT5e45bX4S8NuPXrr2sc823HSL6m1PdrXPM6yKWZrAb5spImkOuSfrqJgF+aCfhFXeZkVXT3zg/3jo2GJMl5524pNkTK5NwupU5e4SM6+dOM8j6i9GYWCZVzu5RWeVs/Mbvgo/mJzWEVh/ITM5i3s6xWhInsw7J6YnmYN1UGepDz1NJuHhk7Tyo38zEJta85R/MaV0VOq9e6Kry9qboqW2aJeQRXRSy/aMh3+xiuiszkVQf5O3VLOauiCdxlNyVzDIsvEbHEmot9vkSkCf1lptMGDmQBdSaKFbfLyWMLgce3u4WWrkjtKayBFWEnjziLWMeAnL1Sc9iXlTTpCRu+vkiGLxxsKpGnBKREwHkvr9iU81OKNXTxRfk1k4pZ+sFJ/jQyzWfN5OJWiYMP6zYuA44OPLm4Xt2qxk3vx77aOcewZstG1qSUbNH43TM1u6YazlT3UfBSlEFHwE41U1R9xuH69JLH1GWWuuAYaFkReg3BhUne3B8xLX9UiYjXODAyxrfOgVEz3ZaVNDHdtHkT4hqvvY6BzKzjF1T12rd8UcFTmGCUc+p1kMtJF7VGv6ykCeRHMK8uXyBfx8FLdX89q6KPp06hQYWoXkrRy5s9fMhlDPAiVcjefcSlZC5MKMo3wCybsEhGv2JC0c/7h9IuXrydNXdWSlJfnFKMt51SzC55oNDTw/uGS5jbCNbav4n7lDLbb6pvtaDmiWW4P6Zu86Qy3bcYerr3ka6vN9/966Qv7KiiqfBjU8b7CzW7mIrrYhFX+BJBdw3jLm2aYw0gv2hKvf1cDWQqvtP492NmB121dDp7wVObSRvqEzlRu+TgS6gL8CeqaZyogg7rnRteHtDgZx/V6FVdNhTJU3G+V63rUPHDdp1yThTSYOpZUWrfPtD8Gru9Z0VZ9C/JR4GjL4rpBKi8Ht1L86QPC+WsOhRDHracOZbkVHx+e1vPPav46LO6j+m7A5HxDDfHi9P+IE4H8dU0+u6/UEsBAhQAFAAAAAgAC2ZtU27waZTyBAAAWCUAABcAAAAAAAAAAAAAAAAAAAAAAGdlb2dlYnJhX2RlZmF1bHRzMmQueG1sUEsBAhQAFAAAAAgAC2ZtUwY4kJdvAwAARREAABcAAAAAAAAAAAAAAAAAJwUAAGdlb2dlYnJhX2RlZmF1bHRzM2QueG1sUEsBAhQAFAAAAAgAC2ZtU0XM3l0aAAAAGAAAABYAAAAAAAAAAAAAAAAAywgAAGdlb2dlYnJhX2phdmFzY3JpcHQuanNQSwECFAAUAAAACAALZm1TDMeQ/ekVAACQ0AAADAAAAAAAAAAAAAAAAAAZCQAAZ2VvZ2VicmEueG1sUEsFBgAAAAAEAAQACAEAACwfAAAAAA==
来源 https://www.geogebra.org/m/FJqaGQjk
相关交互动态和katex配置参考
参考链接: