宋浩《概率论与数理统计》笔记---2.2.3、正态分布


宋浩《概率论与数理统计》笔记---2.2.3、正态分布

一、总结

一句话总结:

若随机变量X服从一个数学期望为μ、方差为σ^2的正态分布,记为N(μ,σ^2)。
其概率密度函数为正态分布的期望值μ决定了其位置,其标准差σ决定了分布的幅度。
当μ = 0,σ = 1时的正态分布是标准正态分布。
$$f ( x ) = \frac { 1 } { \sqrt { 2 \pi } \sigma } \exp ( - \frac { ( x - \mu ) ^ { 2 } } { 2 \sigma ^ { 2 } } )$$

 

1、正态分布公式求积分为1?

$$f ( x ) = \frac { 1 } { \sqrt { 2 \pi } \sigma } \exp ( - \frac { ( x - \mu ) ^ { 2 } } { 2 \sigma ^ { 2 } } )$$
因为这里的f(x)表示的是正态分布的概率密度函数
公式中的1/2pi其实就是为了使概率和为1

 

 

2、普通正态分布转换成标准正态分布?

$$z = \frac { X - \mu } { \sigma }$$

 

3、

 

 

 

二、内容在总结中

博客对应课程的视频位置:

 

 

 


免责声明!

本站转载的文章为个人学习借鉴使用,本站对版权不负任何法律责任。如果侵犯了您的隐私权益,请联系本站邮箱yoyou2525@163.com删除。



 
粤ICP备18138465号  © 2018-2025 CODEPRJ.COM