函数的凹凸性


设函数 $f(x)$ 在区间 $I$ 上有定义,在 $I$ 内任取两点 $x_{1},x_{2}$,对任意的 $\lambda \in (0,1)$,有 $\lambda x_{1} + (1-\lambda )x_{2} \in (x_{1},x_{2})$。

   

$A_{1}$ 点坐标 $(x_{1},f(x_{1}))$,$A_{2}$ 点坐标 $(x_{2},f(x_{1}))$,$A$ 点坐标 $(x,f(x))$,于是可以求得

$$y_{B} = \frac{x_{2}-x}{x_{2}-x_{1}}f(x_{1}) + \frac{x-x_{1}}{x_{2}-x_{1}}f(x_{2})$$

令 $\lambda = \frac{x_{2}-x}{x_{2}-x_{1}}$,则

$$y_{B} = \lambda f(x_{1}) + (1-\lambda )f(x_{2})$$

易推出

$$x = \lambda x_{1} + (1-\lambda )x_{2}$$

结合图像有

$$y_{A} < y_{B}$$

所以

$$f(x) \leq \frac{x_{2}-x}{x_{2}-x_{1}}f(x_{1}) + \frac{x-x_{1}}{x_{2}-x_{1}}f(x_{2})$$

$$f[\lambda x_{1} + (1-\lambda )x_{2}] \leq \lambda f(x_{1}) + (1-\lambda )f(x_{2}),\lambda \in (0,1)$$

当 $x_{1} \rightarrow x_{2}$,上式等号成立。

满足这个性质的函数称为凹函数,凸函数的定义与此类似,不在赘述。

 


免责声明!

本站转载的文章为个人学习借鉴使用,本站对版权不负任何法律责任。如果侵犯了您的隐私权益,请联系本站邮箱yoyou2525@163.com删除。



 
粤ICP备18138465号  © 2018-2025 CODEPRJ.COM