成都市2020届三诊16题



已知点\(F\)为抛物线\(y^2=2px(p>0)\)的焦点\(,\)经过点\(F\)且倾斜角为\(\alpha(0<\alpha<\frac{\pi}{2})\)的直线与抛物线相
交于\(A,B\)两点\(,\)\(\triangle OAB(O\)为坐标原点\()\)的面积为\(2\sin^3\alpha\)\(,\)线段\(AB\)的垂直平分线与\(x\)轴相交于点\(M\).
\(|FM|\)的值为\(\underline{\qquad\blacktriangle\qquad}.\)




(晚上配图)由题意可知,\(S_{\triangle OAB}=\frac{1}{2}|OF|\cdot|AB|\cdot\sin\alpha\)

\(\Rightarrow p^2=4\sin^4\alpha\)

\(AB\)中点为\(D\),则\(|FD|=\frac{|AF|-|BF|}{2}=\frac{p\cos\alpha}{1-\cos^2\alpha}\)

\(\Rightarrow |FM|=\frac{|FD|}{\cos\alpha}=2\)


免责声明!

本站转载的文章为个人学习借鉴使用,本站对版权不负任何法律责任。如果侵犯了您的隐私权益,请联系本站邮箱yoyou2525@163.com删除。



 
粤ICP备18138465号  © 2018-2025 CODEPRJ.COM