tf.placeholder函数说明


 

 

 

函数形式:

tf.placeholder(
    dtype,
    shape=None,
    name=None
)

参数:

  1. dtype:数据类型。常用的是tf.float32,tf.float64等数值类型
  2. shape:数据形状。默认是None,就是一维值,也可以是多维(比如[2,3], [None, 3]表示列是3,行不定)
  3. name:名称,可以理解为变量的名字(自变量)

 

import tensorflow as tf
import numpy as np
 
input1 = tf.placeholder(tf.float32)
input2 = tf.placeholder(tf.float32)
 
output = tf.multiply(input1, input2)
 
with tf.Session() as sess:
    print sess.run(output, feed_dict = {input1:[3.], input2: [4.]})    #运行的时候再具体赋值。

 

 

 

https://blog.csdn.net/kdongyi/article/details/82343712


免责声明!

本站转载的文章为个人学习借鉴使用,本站对版权不负任何法律责任。如果侵犯了您的隐私权益,请联系本站邮箱yoyou2525@163.com删除。



 
粤ICP备18138465号  © 2018-2025 CODEPRJ.COM