tf.placeholder_with_default与tf.placeholder


占位符 
TensorFlow提供一个占位符操作,必须在执行时提供数据。 有关更多信息,请参阅Feeding数据部分。 
Tf.placeholder(dtype,shape=None,name=None) 
插入一个总是需要放入数据的张量的占位符。 
重要提示:如果evaluated,该张量会产生错误。 必须使用feed_dict可选参数为Session.run(),Tensor.eval()或Operation.run()提供其值。 
创建一个占位符作为一个张量(tensor),并且只有在赋值后才可以放到节点中执行。 
For example: 
x = tf.placeholder(tf.float32, shape=(1024, 1024)) 
y = tf.matmul(x, x) 
with tf.Session() as sess: 
print(sess.run(y)) # ERROR: will fail because x was not fed. 
rand_array = np.random.rand(1024, 1024) 
print(sess.run(y, feed_dict={x: rand_array})) # Will succeed. 
Args: 
dtype: 要放给张量(tensor)中的元素类型 
shape: 要放到张量(tensor)中的形状(向量维数)(可选)。如果未指定形状,则可以为任何形状的张量 
name: 操作的名称(可选). 
返回: 
可以用作手段来提供值但不直接评估的张量。 
tf.placeholder_with_default(input, shape, name=None) 
一个占位符的操作,当它的输出没有被馈送时,通过input传递 
Args: 
Input:A Tensor(某一张量),当它的输出没有被馈送时,A的默认值将被传送进来。 或者说当输出没有fed时,input通过一个占位符op  
Shape:A的tf.TensorShape或者ints列表。张量(可能部分的)形状 
Name:操作的名称(可选) 
Returns: 
张量. 与输入的类型相同.一个占位符张量,如果没有输入则默认为输入。 


免责声明!

本站转载的文章为个人学习借鉴使用,本站对版权不负任何法律责任。如果侵犯了您的隐私权益,请联系本站邮箱yoyou2525@163.com删除。



 
粤ICP备18138465号  © 2018-2025 CODEPRJ.COM